Determination of α(M z ) from an hyperasymptotic approximation to the energy of a static quark-antiquark pair

Cesar Ayala (Department of Physics, Universidad Técnica Federico Santa María (UTFSM), Casilla 110-V, Valparaíso, Chile) ; Xabier Lobregat (Grup de Física Teòrica, Departamento de Física and IFAE-BIST, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, E-08193, Spain) ; Antonio Pineda (Grup de Física Teòrica, Departamento de Física and IFAE-BIST, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, E-08193, Spain)

We give the hyperasymptotic expansion of the energy of a static quark-antiquark pair with a precision that includes the effects of the subleading renormalon. The terminants associated to the first and second renormalon are incorporated in the analysis when necessary. In particular, we determine the normalization of the leading renormalon of the force and, consequently, of the subleading renormalon of the static potential. We obtain Z 3 F $$ {Z}_3^F $$ (n f = 3) = 2 Z 3 V $$ 2{Z}_3^V $$ (n f = 3) = 0.37(17). The precision we reach in strict perturbation theory is next-to-next-to-next-to-leading logarithmic resummed order both for the static potential and for the force. We find that the resummation of large logarithms and the inclusion of the leading terminants associated to the renormalons are compulsory to get accurate determinations of Λ MS ¯ $$ {\Lambda}_{\overline{\mathrm{MS}}} $$ when fitting to short-distance lattice data of the static energy. We obtain Λ MS ¯ n f = 3 $$ {\Lambda}_{\overline{\mathrm{MS}}}^{\left({n}_f=3\right)} $$ = 338(12) MeV and α(M z ) = 0.1181(9). We have also MS found strong consistency checks that the ultrasoft correction to the static energy can be computed at weak coupling in the energy range we have studied.

{
  "_oai": {
    "updated": "2021-01-26T00:38:16Z", 
    "id": "oai:repo.scoap3.org:56717", 
    "sets": [
      "JHEP"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "Chile", 
          "value": "Department of Physics, Universidad T\u00e9cnica Federico Santa Mar\u00eda (UTFSM), Casilla 110-V, Valpara\u00edso, Chile", 
          "organization": "Universidad T\u00e9cnica Federico Santa Mar\u00eda (UTFSM)"
        }
      ], 
      "surname": "Ayala", 
      "email": "cesar.ayala@usm.cl", 
      "full_name": "Ayala, Cesar", 
      "given_names": "Cesar"
    }, 
    {
      "affiliations": [
        {
          "country": "Spain", 
          "value": "Grup de F\u00edsica Te\u00f2rica, Departamento de F\u00edsica and IFAE-BIST, Universitat Aut\u00f2noma de Barcelona, Bellaterra, Barcelona, E-08193, Spain", 
          "organization": "Universitat Aut\u00f2noma de Barcelona"
        }
      ], 
      "surname": "Lobregat", 
      "email": "lobregat@ifae.es", 
      "full_name": "Lobregat, Xabier", 
      "given_names": "Xabier"
    }, 
    {
      "affiliations": [
        {
          "country": "Spain", 
          "value": "Grup de F\u00edsica Te\u00f2rica, Departamento de F\u00edsica and IFAE-BIST, Universitat Aut\u00f2noma de Barcelona, Bellaterra, Barcelona, E-08193, Spain", 
          "organization": "Universitat Aut\u00f2noma de Barcelona"
        }
      ], 
      "surname": "Pineda", 
      "email": "pineda@ifae.es", 
      "full_name": "Pineda, Antonio", 
      "given_names": "Antonio"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "Determination of \u03b1(M  z ) from an hyperasymptotic approximation to the energy of a static quark-antiquark pair"
    }
  ], 
  "dois": [
    {
      "value": "10.1007/JHEP09(2020)016"
    }
  ], 
  "publication_info": [
    {
      "page_end": "36", 
      "journal_title": "Journal of High Energy Physics", 
      "material": "article", 
      "journal_volume": "2020", 
      "artid": "JHEP09(2020)016", 
      "year": 2020, 
      "page_start": "1", 
      "journal_issue": "9"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-12-25T01:30:59.851811", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "5299df22464811ebbd0e02163e01809a"
  }, 
  "page_nr": [
    36
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2020"
    }
  ], 
  "control_number": "56717", 
  "record_creation_date": "2020-09-02T05:30:21.454117", 
  "_files": [
    {
      "checksum": "md5:e0dca809ccdb7307333cf10d4dafc0e2", 
      "filetype": "xml", 
      "bucket": "f236aa6e-5f9b-499b-9ff5-044dee453c4d", 
      "version_id": "5f1ddbf3-327c-442c-9c3f-81614405f12d", 
      "key": "10.1007/JHEP09(2020)016.xml", 
      "size": 15798
    }, 
    {
      "checksum": "md5:19d21415bccc4f0e499bbf344051539c", 
      "filetype": "pdf/a", 
      "bucket": "f236aa6e-5f9b-499b-9ff5-044dee453c4d", 
      "version_id": "ece3e44d-a2f3-42a7-a472-7c02ef26ecf4", 
      "key": "10.1007/JHEP09(2020)016_a.pdf", 
      "size": 656860
    }
  ], 
  "collections": [
    {
      "primary": "Journal of High Energy Physics"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph", 
        "hep-lat", 
        "hep-th"
      ], 
      "value": "2005.12301"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "We give the hyperasymptotic expansion of the energy of a static quark-antiquark pair with a precision that includes the effects of the subleading renormalon. The terminants associated to the first and second renormalon are incorporated in the analysis when necessary. In particular, we determine the normalization of the leading renormalon of the force and, consequently, of the subleading renormalon of the static potential. We obtain   <math> <msubsup> <mi>Z</mi> <mn>3</mn> <mi>F</mi> </msubsup> </math>  $$ {Z}_3^F $$  (n  f  = 3) =   <math> <mn>2</mn> <msubsup> <mi>Z</mi> <mn>3</mn> <mi>V</mi> </msubsup> </math>  $$ 2{Z}_3^V $$  (n  f  = 3) = 0.37(17). The precision we reach in strict perturbation theory is next-to-next-to-next-to-leading logarithmic resummed order both for the static potential and for the force. We find that the resummation of large logarithms and the inclusion of the leading terminants associated to the renormalons are compulsory to get accurate determinations of   <math> <msub> <mi>\u039b</mi> <mover> <mi>MS</mi> <mo>\u00af</mo> </mover> </msub> </math>  $$ {\\Lambda}_{\\overline{\\mathrm{MS}}} $$  when fitting to short-distance lattice data of the static energy. We obtain   <math> <msubsup> <mi>\u039b</mi> <mover> <mi>MS</mi> <mo>\u00af</mo> </mover> <mfenced> <mrow> <msub> <mi>n</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>3</mn> </mrow> </mfenced> </msubsup> </math>  $$ {\\Lambda}_{\\overline{\\mathrm{MS}}}^{\\left({n}_f=3\\right)} $$  = 338(12) MeV and \u03b1(M  z ) = 0.1181(9). We have also MS found strong consistency checks that the ultrasoft correction to the static energy can be computed at weak coupling in the energy range we have studied."
    }
  ], 
  "imprints": [
    {
      "date": "2020-09-01", 
      "publisher": "Springer"
    }
  ]
}
Published on:
01 September 2020
Publisher:
Springer
Published in:
Journal of High Energy Physics , Volume 2020 (2020)
Issue 9
Pages 1-36
DOI:
https://doi.org/10.1007/JHEP09(2020)016
arXiv:
2005.12301
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: