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1 Introduction

The spinor helicity formalism has been an efficient tool to calculate scattering amplitudes

with an enormous development over the past decades, especially for the case of massless

particles, e.g. [1]. The application to massive particles is less explored, although processes

involving massive quarks were calculated in [2–9] and massive gauge bosons in [10–12].

Recently, a convenient way to describe massive amplitudes, which makes the (massive)

little group covariant, was presented in ref. [13]. This formalism can be applied to super-

symmetric theories [14, 15], to the Standard Model (SM) [16, 17] and to study amplitudes

with higher spin particles [18–20]. A natural question that follows is: what can we learn

in the context of Effective Field Theories (EFTs) using the formalism of massive on-shell

amplitudes?
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One way to study the effects of beyond SM (BSM) physics is to write all the possible

(independent) higher dimensional operators assuming the SM symmetries. In particular,

the SM Effective Field Theory (SMEFT) is built on the assumption of a linearly realized

electroweak symmetry (for a recent review, see [21]).1 Note that the operators may be

related by field redefinitions and finding a basis is, in general, not a trivial task. The so-

called Warsaw Basis, for example, was obtained using the equations of motion to remove the

maximum number of covariant derivatives [23].2 In addition, the calculation of observables

with the inclusion of higher dimensional operators may involve the computation of diagrams

with a large number of external particles and derivatives.

Thus it seems compelling to ask if it is possible to formulate the EFTs without dealing

with Lagrangians and equations of motion, and use the spinor language to describe the

physics only in terms of on-shell quantities instead. Indeed, this has been already explored,

for instance, to calculate QCD amplitudes with the operators G3 and hG2 [27, 28], to study

helicity selection rules [29] and the anomalous matrix [30] in the SMEFT (with massless

particles), and also for more general EFTs [10, 31–34].

On the other hand, there are several obstacles to extend these results for the SMEFT

at low energies, as many of them apply only to massless particles and theories with non-

trivial soft limits. Besides, the recursion relations do not always work for EFTs, as contact

interactions, which are non-factorizable, are needed as an extra input. There are a few ways

to overcome this problem for certain classes of theories [10, 31, 34, 35] and recently, a new

strategy was presented in [36] to construct amplitudes with higher dimensional operators

for an EFT that consists of the SM plus a massive scalar that couples to gluons. This

points in the direction of constructing generic EFTs without Lagrangians, fully in the

on-shell language.

In this paper, we want to explore the formulation of the massive on-shell SMEFT fo-

cusing on the electroweak sector without fermions (Nf = 0). In the broken phase, we can

use that the massive 3-point on-shell amplitudes and non-factorizable 4-point amplitudes

are related by the Higgs vev to define the (electroweak) SMEFT deformations at dimension

six level. The eleven dimension six operators can be described in terms of the hhh, hγγ,

hγZ, hWW̄ , hZZ̄, WW̄Z and WW̄γ massive on-shell amplitudes. Independent structures

can only appear from dimension eight operators or in a framework where the electroweak

symmetry is non-linearly realized. Notice that this is only true because we are not con-

sidering the limit of massless particles, in which case, the purely bosonic operators of the

Warsaw basis should be defined including explicitly the 4-point contact interactions [37].

Finally, the main goal is to find a fully on-shell description for the SMEFT in the lines

of the bootstrap program, i.e. computing the S-matrix bypassing the usual quantum field

theory machinery, and this work is a first step towards this direction. Although we are

1If the electroweak symmetry is non-linearly realized we have the so-called Higgs Effective Field Theory

(HEFT). We are not exploring this case here [22], although it is an interesting problem to understand how

the difference between SMEFT and HEFT emerges in the on-shell construction.
2A general approach involving Hilbert series can be used to find the set of independent operators,

see [24, 25]. Moreover, a new approach on the construction of a operator basis using the Poincaré symmetry

of spacetime was presented in [26].
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relying on Feynman rules to obtain the coefficients of on-shell amplitudes, the kinematic

part is totally fixed by Lorentz symmetry and unitarity.3 In addition, we explore the

calculation of SM and SMEFT scattering amplitudes with massive particles. For the SM,

we calculate the massive amplitudeWWγγ with the Britto-Cachazo-Feng-Witten (BCFW)

recursion relation [39, 40] and we discuss how to obtain the WWhh demanding correct

factorization and unitarity in the high energy limit (HE). For the SMEFT, the recursion

relations are challenging and we discuss some possible strategies to overcome the problems.

The paper is organized as follows: in section 2 we discuss how to describe higher

dimensional operators with the amplitude language, starting from the massless and moving

to the massive case. In section 3, we discuss our strategy to do the map of the dimension

six operators in the Warsaw basis to the on-shell language which requires defining an

appropriate input scheme. Next, in section 4, we write the 3-point massive amplitudes and

then define the on-shell basis. We then move to the discussion about scattering amplitudes

using the on-shell basis in section 5.

2 EFTs with amplitudes

The massless three point amplitudes are completely fixed by the U(1) Little Group (LG),

locality and by the special 3-point kinematics [41]. This means that there are two non-trivial

solutions for the on-shell 3-point amplitudes if we allow the 4-momenta to be complex: the

holomorphic (H) with all [i j] = 0 and the anti-holomorphic (AH) with all 〈i j〉 = 0. Hence,

the general formula for the 3-point massless amplitudes is given by

M3(1
h12h23h3) = g

{
〈12〉−h1−h2+h3〈23〉h1−h2−h3〈31〉−h1+h2−h3 , h < 0 (H),

[12]h1+h2−h3 [23]−h1+h2+h3 [31]h1−h2+h3 , h > 0 (AH),
(2.1)

where h ≡ ∑
i hi.

4 We can then see that there is a relation between the mass dimension

of the coupling g and the allowed vertices. More precisely, a n-point amplitude has mass

dimension [Mn] = 4− n, so using eq. (2.1) we get that:

|h| = 1− [g] . (2.2)

In order to connect this formula with terms in the Lagrangian, it is useful to define the

complex field strength as [43]:5

X±
µν =

1

2
(Xµν ∓ iX̃µν) , X̃±

µν = ±iX±
µν , (2.3)

3Recently, ref. [38] presented a bottom-up construction of the electroweak amplitudes, in which the

SU(2)L ×U(1)Y symmetry arises imposing perturbative unitarity in tree-level amplitudes. Although their

construction applies for a theory with general non-renormalizable interactions, it was showed that it is

possible to map the Warsaw basis and our results were recovered.
4In the case of h = 0, besides the trivial case where all helicities are zero (φ3-theory), it is possible

to prove that both cases reduces to a constant of mass dimension one, which vanish for all theories with

coupling [g] ≤ 0. Moreover, these theories fails to fullfill four-points consistency conditions [42].
5In terms of spinor indices the gauge field strength is Fµνσ

µ
αα̇σ

ν

ββ̇
≡ Fαβ ǭα̇β̇ + F̄α̇β̇ǫαβ , where Fαβ , where

Fαβ (F̄α̇β̇) corresponding to helicity +1(−1). For a review on spinors, see [44].
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with X̃µν = ǫµναβX
αβ/2. The holomorphic operators are constructed with X+ fields and

anti-holomorphic ones with X−. For example, the OX = X3 and OX̃ = X̃3 operators can

be written as O±
X ≡ (OX ∓ iOX̃)/2, such that

L ⊃ cXOX + cX̃OX̃ = c+XO+
X + c−XO−

X , (2.4)

where we define the H and AH complex Wilson coefficients as c±X = cX ± icX̃ . We can then

easily make the connection with eq. (2.2). For a coupling with mass dimension [g] = −2, the

only possible vertices have total helicity ±3, which are generated by the H/AH operators

X3,±. For [g] = −1, the possible 3-point amplitudes corresponds to the dimension five

operators (X±)2φ, ψ2φ and ψ̄2φ, where ψ and ψ̄ are Weyl spinors.

Moving to higher point amplitudes, we cannot use the 3-point special kinematics as in

this case sij = (pi + pj)
2 is non-zero. However, we can still extract some information using

the LG scaling and dimensional analysis. In general, a n-point tree-level massless amplitude

can be written as a sum of angles and square brackets with a common denominator [10]:

Mn(1
h1 · · ·nhn) ∼ g

∑〈· · ·〉na [· · ·]nh

∑〈· · ·〉da [· · ·]dh , (2.5)

which means that the numerator and denominator are a sum of Lorentz invariant objects.

The difference of H/AH contraction is ∆i ≡ ni−di, then dimensional analysis and LG gives

∆a +∆h + [g] = 4− n , ∆a −∆h = −h . (2.6)

For n > 3, all non-factorizable terms are polynomials in the spinor products. For ex-

ample, in the case of a n = 4 with [g] = −2, eq. (2.6) is simply na + nh = 2, as a

non-zero di would introduce a pole. For bosonic operators, the only possibility is then

M4 ∼ {〈· · ·〉2, [· · ·]2, 〈· · ·〉[· · ·]}. This can be done systematically in order to construct a

amplitude basis for higher dimensional operators without make use of a Lagrangian [37].

However, this simplicity holds just up to dimension six operators as beyond it is chal-

lenging to identify the independent terms, as there are terms with more derivatives con-

tributing to the same helicity amplitude. Although arduous to do analytically, ref. [32]

suggests an numerical approach to identify the redundant terms, which can be useful, for

instance, to find a dimension eight basis for the SMEFT. Another strategy is to explore

the spacetime symmetries as in [26].

We are going to pursue a possibility less explored so far, that is to study higher

dimensional operators with massive amplitudes. We are then able to study the broken

phase of SMEFT amplitudes and define a dimension six basis only using 3-point amplitudes.

For 3-point massive amplitudes, the associated massive LG is the SO(3) ≃ SU(2)/Z2.

The massive momenta can be represented by 4 spinors collected into two vectors χI and

χ̃I , with I = 1, 2 for the SU(2) indices and greek letters for the Lorentz indices:

pαβ̇ = χI
αχ̃β̇,I with p2 = detχdet χ̃ = m2 , (2.7)

where detχ = 1
2
χIχI and det χ̃ = 1

2
χ̃Iχ̃I . The conventions used here are shown in

appendix A and the massive particles quantities are represented with the bold notation,

– 4 –
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introduced in [13]. Moreover, we are going to omit the SU(2) indices for the massive

particles and use the short-hand notation as e.g. [i j]2 ≡ 1
2

(
[iI1 j][iI2 j] + [iI2 j][iI1 j]

)
. In

the rest of the paper, we consider the symmetrization of the SU(2) indices always implicit.

The massive complex momenta respecting the on-shell condition should have 8−2 = 6

real degrees of freedom (d.o.f). Since we introduced 4 two-component spinors, i.e. 16 real

d.o.f, where 2 of them are fixed by eq. (2.7), the remaining 8 d.o.f corresponds to the

GL(2) redundancy χJ → SJ
KχK and χ̃J → (S−1)KJ χ̃K , where S ∈ GL(2). Whenever

the 4-momenta is real, the GL(2) reduces to SU(2) ⊗ U(1), where the SU(2) part act as

rotations on the index J and the U(1) is just a rephasing, as it commutes with the LG. A

possible choice used to fix this transformation is given by detχ = det χ̃ = m [13].6

The n-point amplitudes can then be written as eq. (2.5), with the difference that now

there is also the SU(2) LG to be satisfied. In particular, the 3-point amplitudes can mix

H and AH Lorentz invariants, as (pi + pj)
2 is non-zero:7

M3 ∼
∑

G

gi 〈· · ·〉Na [· · ·]Nh , (2.8)

where G is the set of all possible irreducible contractions of the massive/massless spinor

variables. (Note that in the massless case Na = 0 or Nh = 0 due to the special kinematics.)

The size of G is set by the number of the massive external legs and their spinors, we show all

possibly cases on the appendix A (where we follow closely ref. [13] but a different approach

to build massive 3-point amplitudes can also be found in [45]). Note that dimensional anal-

ysis give Na+Nh = 1−[gi], similarly to the massless case. The difference is that gi can have

powers of masses, so [gi] = −2 does not correspond necessarily to a dimension six operator.

For a theory with spontaneous symmetry breaking, in the broken phase, we choose to

write gi using powers of v andmW,Z times a dimensionless function, as showed in table 1. As

we are going to show in the next section, with these pre-factors, the dimensionless function

depend only on the Wilson coefficients ci, the Weinberg angle θ and the Higgs quartic

coupling λh. We can see that for [gi] = ±1 the natural dimensional parameter is the Higgs

vev v, as the Higgs mechanism shows itself as a IR unification of the UV amplitudes [13].

Therefore, massless amplitudes apparently unrelated in the UV can be unified into different

components of massive amplitudes in the IR. The only case in which no mass or vev should

appear is the [gi] = −2 term that corresponds exactly to the (X±)3 operator, as it is the only
possible dimension six operator for a massless 3-point amplitude. For the SM couplings,

the HE limit of the amplitudes determines the power of masses (see also [17]). On the other

hand, it is unclear how to ‘bootstrap’ the dimensionless functions. For some theories the

soft limit of higher point amplitudes can encode information about the symmetries [34], but

it is uncertain how this approach should be applied for the SMEFT. In the next sections,

we are going to obtain these functions comparing with the SMEFT Feynman rules.

6Since its an arbitrary phase, it is possible to choose to transform, for instance, just the spinor with

index I = 2 as in ref. [45]. Requiring that the amplitude is invariant under the rephasing may lead to

additional constraints on the massive amplitudes. We leave the exploration of this point for a future work.
7There is a subtley in the case of two particles with same mass, as there is a term in the denominator

to fix the LG of the massless particle (for further details, see appendix A).
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Coupling dim. [gi] = 1 [gi] = −1 [gi] = −2

Marginal v Ghhh
1
v GhV̄ V

1
vmW

GWW̄γ ,
1

vmW
GWW̄Z , 1

vmZ
GWW̄Z

Dim-6 v3

Λ2 Chhh v
Λ2 ChViVj

v
Λ2 mW

CWW̄V , 1

Λ2 C ′
WW̄V

Table 1. The mass dimension of gi is fixed by the spin/helicities of the 3-point amplitude and we

choose to write it as powers of v, mW,Z and Λ times a dimensionless functions (we use Gi for SM and

Ci for dimension six structures). In order to do the map to the Nf = 0 SMEFT we need to write

the following 3-point amplitudes: hhh, hγγ, hγZ, hWW̄ , hZZ̄, WW̄Z and WW̄γ. The kinematic

part is fixed by the massless/massive LG. The symmetries and UV properties of the theory are

encoded in the dimensionless functions.

Bosonic operators

O±
W ǫijkW i,±

µν W j,±
νρ W k,±

ρµ OH (H†H)3

O±
HB H†HB±

µνB
±
µν OH� (H†H)�(H†H)

O±
HW H†HW±

µνW
±
µν OHD |H†DµH|2

O±
HWB H†σiHW i,±

µν B±
µν

Table 2. Bosonic operators in the Warsaw basis. We define the holomorphic and anti-holomorphic

operators/Wilson coefficients as O±

X ≡ (OX ∓ iOX̃)/2 and c±X = cX ± ic̃X . Note that the operators

on the right side do not have defined holomorphic structure.

3 The Lagrangian side: Feynman rules and input parameters

In order to draw the map between the dimension six SMEFT and on-shell amplitudes,

we are going to use the Warsaw basis, which is convenient as the number of derivatives

are reduced to a minimum in trade for operators with more fields. One advantage is that

there are no bivalent operators which makes the on-shell description more convenient (see

also [29, 30]). The SMEFT Lagrangian is given by

LSMEFT = LSM +
∑

i

ci
Λ2

Oi , (3.1)

where Λ is the EFT expansion parameter (from now on we ignore Λ−4 effects), and the

Wilson coefficient ci and the dimension six operators Oi can be written in the H and AH

form using eq. (2.3) (see table 2). We are considering the operators without fermions and

gluons such that the space of higher dimensional operators is 11-dimensional. For the

SMEFT Feynman rules we are following the conventions and results of ref. [46].

Before writing the on-shell amplitudes, one important comment is in order. The SM

has five free parameters which are gL, gY , gs, λh and v, i.e, three gauge couplings, the

Higgs quartic coupling and the Higgs vev. A common choice to extract the values of SM

electroweak parameters gL, gY and v is through the measured experimental observables
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{mZ , α(0), GF }. These observables will receive contributions from diagrams involving di-

mension six operators that are usually parametrized as ḡL, ḡY , λ̄h, v̄ where x̄ ≡ x̂+δx and we

are considering just tree-level corrections of order O(Λ−2) in the δx parameters. To get the

bar parameters we have to choose the measurements used to fix the Lagrangian parameters.

From the point of view of the on-shell amplitudes formalism, particle masses constitute

natural input, as they label representations of the Poincaré group and do not receive any

corrections. Since we need to fix four parameters (considering that gs is fixed via the SM-

like triple gluon self-coupling) and there are only three masses available, we are going to

leave the fourth choice unspecified, which means that the formulas will depend explicitly

on δv. Thus, we can define the on-shell input scheme as {m̂W , m̂Z , m̂h}, which follows the

SM relations with the hat parameters:

m̂W =
ḡL v̄

2
, m̂Z =

√
ḡ2L + ḡ2Y v̄

2
, m̂h = λ̄h v̄

2 . (3.2)

Solving these equations we obtain

δgY
ĝY

= −δv

v̂
− v̂2

Λ2

(
cHD

(ĝ2L + ĝ2Y )

4 ĝ2Y
+ cHWB

ĝL
ĝY

)
,

δλh

λ̂h

= −2 δv

v̂
+

v̂2

Λ2

(
3 cH

λ̂h

− 2 cH� +
cHD

2

)
,

δgL
ĝL

= −δv

v̂
. (3.3)

One may choose a pseudo-observable for the fourth parameter as the electromagnetic SM-

like coupling between the photon and a W pair. Then δv can be obtained using the fact

that ê ≡ ĝL ĝY /
√
ĝ2L + ĝ2Y and δgL, δgY of eq. (3.3), which leads to

δṽ ≡ δvΛ2

v3
= − ĝ2L

ĝ2Y

(
cHWB

ĝLĝY
ĝ2L + ĝ2Y

+
cHD

4

)
. (3.4)

For now on, we are going to leave δṽ unspecified. The Weinberg angle can then be defined

as cθ̂ ≡ m̂W /m̂Z , which at O(Λ−2) gives cθ̄ ≡ cθ̂ + δcθ where,8

δcθ ≡
ĝY

(ĝ2L + ĝ2Y )
3/2

(ĝY δgL − ĝLδgY ) . (3.5)

Notice that δgY , δλh and δgL are relevant only in the deviation of SM amplitudes, since

whenever a dimension six Wilson coefficient multiplies them, the term is order Λ−4. In the

following, we drop the hat as it corresponds to the observable quantities.

4 The on-shell side: SMEFT 3-point amplitudes

We are going to write the massive 3-point amplitudes for hhh, hγγ, hγZ, hWW̄ , hZZ̄,

WW̄Z and WW̄γ. Comparing with the Feynman rules allows us to draw a 1-to-1 map

from on-shell amplitude coefficients and the SM/Warsaw basis parameters.

8One should be careful with this definition as there are extra pieces in the rotation of gauge fields to

the mass basis, however, in [46], this is already taken into account in the Feynman rules, and the Weinberg

angle can be consistently defined in this way.
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4.1 Massive 3-point amplitudes

In the case of Higgs self-interactions, there are no little group indices, hence the most

generic on-shell 3-point amplitude is just a constant as we can always trade momentum

contractions with masses. The SM and dimension six contributions can be parametrized as

M(1h2h3h) = v Ghhh +
v3

Λ2
Chhh . (4.1)

Moving to one massive with spin s and two massless particles with helicities h2 and h3,

there is a non-trivial constraint on the amplitude given by |h3 − h2| ≤ s, which is another

way to see the Landau-Yang Theorem [13, 45]. Then, in the case of the coupling of the

Higgs with two photons, the only possibility is to have the photons with the same helicity:

M(1h2
+
γ 3

+
γ ) =

v

Λ2
C+
hγγ [23]

2, (4.2)

where the amplitude with photons of helicity −1 can be obtain just applying a parity

transformation, which is equivalent to replacing [2 3] ↔ 〈2 3〉 and C+
hγγ ↔ C−

hγγ .

In the case of two massive (with different masses) and one massless particle, the only

constraint on the amplitude is |h3| ≤ s1 + s2. Then, we can write the amplitude with the

Higgs, the Z boson and the photon as

M(1h2
J1,2
Z 3+γ ) =

v

Λ2
C+
hZγ[23]

2 , (4.3)

and similarly to the eq. (4.2), the amplitude with the photon with helicity −1 can be

obtained by parity.

For the amplitudes with three massive particles the number of terms can be reduced

noticing that many structures are zero after the symmetrization of the SU(2) indices.9

The structures with a momentum insertion can be rewritten in terms of contractions of

angle and square brackets with the use of Schouten identities (see appendix A). Then, for

V = W,Z we have

M(1h2
I1,2
V 3

J1,2
V̄

) =

(
1

v
GhV V̄ +

v

Λ2
ChV V̄

)
〈23〉[23]+

v

Λ2
C−
hV V̄

〈23〉2 +
v

Λ2
C+

hV V̄
[23]2 , (4.4)

and the triple gauge coupling WW̄Z can be written as:

M(1
I1,2
W 2

J1,2
W̄

3
K1,2

Z ) = F1

(
〈12〉[23][31]+ [12]〈23〉〈31〉

)

+ F2

(
〈31〉[12][23]+ [31]〈12〉〈23〉

)

+ F3

(
〈23〉[31][12]+ [23]〈31〉〈12〉

)

+
v

mWΛ2

(
C+

WW̄Z
〈12〉[23][31]+ C−

WW̄Z
[12]〈23〉〈31〉

)

+
1

Λ2

(
C′+
WW̄Z

[12][23][31]+ C′ −
WW̄Z

〈12〉〈23〉〈31〉
)
, (4.5)

9This is a manifestation of the Ward identity for massive vectors, since ǫ
K1K2

3
· p3 ∼ 〈χ3|p3|χ̃3]

K1K2 =

−m3〈33〉
K1K2 = −m3 ε

K1K3 → 0, where the last step is due the symmetrization of the antisymmetric

tensor εK1K2 . For massless particles, the Ward identity comes from the fact the brackets with the same

particle vanish, i.e 〈33〉 → 0.

– 8 –
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where,

F1 = F2 =
1

vmZ
GWW̄Z +

v

mZΛ2
CWW̄Z , F3 =

1

vmW
GWW̄Z +

v

mWΛ2
CWW̄Z . (4.6)

Since all invariants can be written as masses, e.g. 2p1 · p2 = m2
3−m2

1−m2
2, the coefficients

of the amplitudes can differ for each term. The form above is particularly convenient

to compare with the Feynman rules. Alternatively, one may start with a momentum

insertion asM ⊃ (〈12〉[12] 〈3|p1|3] + cyclic) and use the equations of motion and Schouten

identities to write as eq. (4.5).

Moving to the amplitude ofWW̄γ, we have one massless and two massive particles with

same mass and, consequently, only one spinor to construct the amplitude. Following [13],

we can define an auxiliary object x and x−1:10

x ≡ 〈ζ|p2|3]
〈ζ3〉

and x−1 ≡ 〈3|p2|ζ]
[ζ3]

(4.7)

where ζ is an arbitrary spinor, 2 is a massive leg and 3 is the massless one. They transform

as x → t−2
3 x and x−1 → t23 x

−1 under the little group of the massless particle and relate to

the momenta/polarization vector as:

x =
√
2pµ1 ǫ

+
µ (p3) and x−1 =

√
2pµ1 ǫ

−
µ (p3) . (4.8)

Then, the amplitude can be organized with powers of x. This parametrization makes

manifest the HE of the interactions, i.e. the minimal coupling appears as the first term in

the expansion and it is the one with best UV behaviour (this has interesting applications

in the context of black hole physics, see [18]). We can also use the relations

〈21〉 = [21]+
[23][31]

x
and 〈23〉〈31〉 = −[23][31]

m2
W

x2
, (4.9)

to write the amplitude in a similar form as the WW̄Z:

M(1
I1,2
W 2

J1,2
W̄

3−γ ) =

(
1

vmW
GWW̄γ +

v

mWΛ2
CWW̄γ

)
x−1[12]2

+
v C−

WW̄γ

mWΛ2
[12]〈23〉〈31〉 +

C′−
WW̄γ

Λ2
〈12〉〈23〉〈31〉 . (4.10)

It is worth mentioning that the high energy limit of the amplitudes with massive gauge

bosons are consistent with the Goldstone boson equivalence theorem. As we showed ex-

plicitly in appendix B, the amplitudes with a longitudinal mode have the same structure

as the amplitude in which the longitudinal mode is replaced by a scalar.

Having the form of all 3-point amplitudes with gauge bosons allows us to map to the

Feynman rules and obtain the dimensionless functions. We use the convention that Gi and

Ci correspond to the SM-like structures and G±
i correspond only to dimension six operators

through H or AH combinations of operators showed in table 2. The explicit form of all

functions are showed in tables 3 and 4.
10Note that our definition is slightly different from [13] since we do not have a mass in the denominator.

This is useful to write the amplitude for WW̄γ and WW̄Z in a similar form.
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Gi Ghhh GhV V̄ GWW̄Z GWW̄γ

SM −3λh −2 2
√
2 cθ −2

√
2 sθ

Table 3. Map between the dimensionless Gi functions and the Standard Model parameters.

Ci Warsaw Basis

Chhh 3λhδṽ + 6cH − 9λhcH� + 9/4λhcHD

CWW̄Z −4
√
2 cθ

[
cHD/4 + cHWB sθcθ − δṽ

]

CWW̄γ −
√
2 cθ/tθ

[
cHD/4 + cHWBsθcθ + δṽ

]

ChZZ −2
[
cH� + cHD/4− δṽ

]

ChWW̄ −2
[
cH� − cHD/4− δṽ

]

C±
hγγ −2

[
s2θ c

±
HW − sθ cθ c

±
HWB + c2θ c

±
HB

]

C±
hZγ −

[
(s2θ − c2θ ) c

±
HWB + 2sθ cθ (c

±
HW − c±HB)

]

C±
hZZ −2

[
c2θ c

±
HW + s2θ c

±
HB + cθ sθ c

±
HWB

]

C±
hWW̄

−2 c±HW

C±
WW̄Z

c±HWB

√
2 sθ

C±
WW̄γ

c±HWB

√
2 cθ

C′±
WW̄Z

c±W 3
√
2 cθ

C′±
WW̄γ

c±W 3
√
2 sθ

Table 4. Map between the dimensionless functions Ci, C±

i and the dimension six SMEFT in the

Warsaw basis, where we define δṽ ≡ Λ2 δv/v3 (see also eq. (3.4)).

4.2 Defining an on-shell basis

In addition to the SM couplings, there are 11 parameters in the purely bosonic electroweak

sector of SMEFT as can be seen in table 2. However, the map from 3-point massive on-

shell amplitudes to the Feynman rules has 21 dimensionless functions Ci, C±
i (see table 4).

This is because the gauge symmetries relate several amplitudes and, in order to define an

on-shell basis, we need to reduce the 21 functions to a 11-dimensional space. There are

many equivalent choices but a convenient set that we are going to use to define the on-shell

basis is given by:

Chhh, ChZZ , ChWW̄ , C±
hγγ , C′±

WW̄γ
, C±

WW̄γ
, C±

hWW̄
. (4.11)
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The remaining 10 coefficients (C±
hZZ , C±

hZγ , C±
WW̄Z

, C′±
WW̄Z

, CWW̄Z , CWW̄γ) can be related to

the ones of the basis through the following relations:

c2θ C±
hZZ = −

√
2 sθ C±

WW̄γ
+ s2θ C±

hγγ + (c2θ − s2θ) C±
hW̄W

,

cθ C±
WW̄Z

− sθ C±
WW̄γ

= 0 , sθ C′±
WW̄Z

− cθ C′±
WW̄γ

= 0 ,

2 cθsθ C±
hZγ = C±

hW̄W
− c2θ C±

hZZ − s2θ C±
hγγ , (4.12)

and we are still left with two SM-like structures CWW̄Z and CWW̄γ . One linear combination

is given by

CWW̄Z + 4 tθ CWW̄γ =
(
ChZZ − ChWW̄

)
2
√
2 cθ − 4 sθ cθ

(
C+

WW̄γ
+ C−

WW̄γ

)
, (4.13)

and another one is determined once δv is fixed. We can also write the Wilson coefficients

ci of the Warsaw basis in terms of the on-shell basis parameters:

c±W =
C′±
WW̄γ

3
√
2 cθ

, c±HW = −
C±
hWW̄

2
, c±HWB =

C±
WW̄γ√
2 cθ

,

c±HB = − 1

2 c2θ

(
C±
hγγ − s2θ C±

hWW̄
−
√
2 sθ C±

WW̄γ

)
, cH =

Chhh
6

− 3λhChWW̄

4
+ λh δṽ,

cH� = −1

4

(
ChWW̄ + ChZZ

)
+ δṽ , cHD =

(
ChWW̄ − ChZZ

)
. (4.14)

5 What about 2 → 2 scattering amplitudes?

The advantage of recursion relations is well-known in several cases and an important tool

for LHC calculations (for a review, see [1, 47]). In particular, the BCFW recursion relations

can be used to calculate massless [39, 40] and massive amplitudes [6, 48, 49] at tree and loop

level. On the other hand, for a general EFT the recursion relations can fail, as normally the

amplitudes are not fixed just by factorization.11 Once the information about independent

interactions is supplied, the amplitude can be built recursively for a minimum number of

external legs. Then, a good large-z behaviour can be obtained with the all-line shift [10]

or with soft-shifts (for theories with massless particles and non-trivial soft degree) [31, 34].

Another way to calculate amplitudes requiring consistent factorization was presented

in [13] (see also [18]). This means that for a set of 3-point amplitudes and particle spectrum,

one may look for a function that factorizes correctly in each channel, noticing that the

residue in one channel can manifest as a pole in another channel. Requiring that the

amplitude factorize in all physical channels and that there are no other poles allows to

iteratively build the correct amplitude up to polynomial terms (i.e. without poles).

In order to study massive amplitude with higher dimensional operators we are going

to use the BCFW and/or the requirement of consistent factorization channels to build the

11One could think that the obstacle for applying recursion relations to EFTs is the energy growth of the

amplitudes. However, as discussed in [31], a bad high energy behaviour is not an obstacle to the BCFW,

as many gravity amplitudes can be calculated correctly in this way. Indeed, in ref. [50], it is shown that

the BCFW works for any amplitude in two-derivatives gauge and (super)gravity theories.
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factorizable part of the amplitude. For the SM, the coefficient of the contact interactions

are going to be obtained demanding that the full amplitude asymptotes to a constant in

the HE. For EFTs, the full amplitude in general grows with some energy power in the HE

limit and we should look for different strategies to fix the coefficient of non-factorizable

terms. However, since we are adding the information about the electroweak symmetry

breaking explicitly, i.e. relying on the Feynman rules structure and doing a map to the

on-shell amplitudes, the contact interactions are related to the 3-point amplitude once δṽ

is fixed. Generically, one may use of the following steps to build massive amplitudes:

1. Build the M4 amplitude using recursion relations (e.g. BCFW);

2. Check if the result factorizes correctly in all physical channels. If this is not the

case, it means that the recursion relations failed, in the sense that there is a non-zero

boundary term;

3. The boundary term can be calculated requiring consistent factorization (see also [51]);

4. Once the factorizable part is calculated, write all possible polynomials terms (without

poles) consistent with the LG;

5. Compute the HE limit to obtain information about the coefficient of the non-

factorizable terms.

Indeed, steps 1-3 can be replaced by simply starting with an ansatz (gluing lower point

amplitudes) and building a function that factorizes correctly, as presented in [13]. We are

going to show a few cases where this algorithm is useful and give the correct result.

5.1 WW̄γγ

Let us start with the SM amplitude MSM(1W2W̄ 3−γ 4
+
γ ). In this case, the easier choice is

to shift the massless legs to the complex plane such that

|4̂〉 = |4〉+ z|3〉, |3̂] = |3] − z|4] , (5.1)

while |4̂] = |4] and |3̂〉 = |3〉. With the [3−, 4+〉- shift, there are two factorization channels

that corresponds to

p̂2
q
= (p1 + p̂3(zt))

2 = m2
W ⇒ zt =

2p1p3
〈3|p1|4]

,

p̂2
q
= (p1 + p̂4(zu))

2 = m2
W ⇒ zu = − 2p1p4

〈3|p1|4]
. (5.2)

The amplitude can then be represented by

M(1W2W̄ 3−γ 4
+
γ ) = M̂(1W 3−γ qW̄ )

1

t−m2
W

M̂(−qW2W̄ 4+γ )

+ M̂(2W 3−γ qW̄ )
1

u−m2
W

M̂(−qW1W̄ 4+γ )

= M̂t + M̂u , (5.3)
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where the M̂ indicate the 3-point amplitudes with the shifted legs of eq. (5.1) corresponding

to the t and u-channel. We can write the t-channel contribution explicitly as

M̂t =

(
GWW̄γ

vmW

〈3̂|p1|ξ3]
[ζ3 3̂]

[1q̂]2

)
1

t−m2
W

(
GWW̄γ

vmW

〈ζ4|p2|4̂]
〈4̂ ζ4〉

〈2 q̂〉2
)

. (5.4)

We can choose ζ3 = 4 and ζ4 = 3, then the z part is proportional to 〈3 3〉 = 0 and [4 4] = 0

which simplifies the calculation. It is also useful to use momentum conservation to write

〈3|p1|4] = −〈3|p2|4] and

〈2|pq|1] =
m2

W

〈3|p2|4]
(
〈31〉[42] + 〈32〉[41]

)
. (5.5)

The calculation for the M̂u is analogous as we can replace 3 ↔ 4. We can then sum both

contributions to obtain

M(1W2W̄ 3−γ 4
+
γ ) = −

(GWW̄γ mW /v)2

(t−m2
W )(u−m2

W )

(
〈31〉[42] + 〈32〉[41]

)2

, (5.6)

The square indicates the contraction with the same term with different SU(2) indices and

the symmetrization is implicit. Using the map of table 3, we get that (GWW̄γ mW /v)2 = 2e2.

We can see that naively the amplitude goes as z−2, which justifies us finding the correct

result with the chosen shift. However, we should not make use of the final result to prove

the large-z behaviour. A more detailed analysis for massive BCFW based on Feynman

diagrams (in the case of gluons and massive quarks) can be seen in [6, 48] and it would be

interesting to find a generalization for any shift on the lines of [35].

The good large-z behaviour and the absence of boundary terms can also be seen notic-

ing that an independent contact interaction would have the form

GWW̄γγ

v4

(
〈31〉[42] + 〈32〉[41]

)2

, (5.7)

which blows up in the HE, so indeed GWW̄γγ = 0. This is the most generic structure

consistent with the LG (at leading order in 1/v) as any other term with a momentum

insertion can be reduced to this one using Schouten identities.

For the amplitude where the photons have same helicities we can try a different shift

where one of the legs is massive. The [4+,1〉- shift is given by

|1̂I〉 = |1I〉 − z〈41I〉|4〉, |4̂] = |4] + z〈41K〉|1K ]. (5.8)

Since it is clear how the SU(2) indices should be contracted, we will omit the indices in the

following. For this shift, the only factorization channel corresponds to p̂2
q
= (p1+p̂3(zt))

2 =

m2
W . (The u-channel diagram would have both shifted legs in the same sub-amplitude so it

vanishes and there is no s-channel as it is not allowed a vertex with photons of the opposite

helicities). Solving the condition above for zt, we get

zt =
t−m2

W

〈3 4〉〈4|p1|3]
=

〈3|p1|3]
〈3 4〉〈4|p1|3]

. (5.9)
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Then, the amplitude is given by

M(1W2W̄ 3−γ 4
−
γ ) = M̂(1W 3−γ qW̄ )

1

t−m2
W

M̂(−qW2W̄ 4−γ )

=

(GWW̄γ

vmW

〈3|p̂1|ζ3]
[ζ3 3]

[1q̂]2
)

1

t−m2
W

(GWW̄γ

vmW

〈4|p2|ζ4]
[ζ4 4̂]

[2q̂]2
)

(5.10)

It is convenient to choose ζ3 = 4 and ζ4 = 3. We can also use that

〈3|p̂1|4] = 〈3|p1|4]− zt〈3 4〉〈4|p1|4] =
m2

W s

〈4|p1|3]
, (5.11)

where 〈3 4〉[4̂ 3] = m2
W − u and 〈3 4〉[3 4] = s. This leads to

M(1W2W̄ 3−γ 4
−
γ ) =

(GWW̄γ mW /v)2

(t−m2
W )(u−m2

W )
[12]2〈3 4〉2 , (5.12)

which agrees with the Feynman rules calculation. Naively, we can see that with the one

massless/one massive shift the amplitude scales as z−2. On the other hand, a shift on

both massless legs would go as z0, which explains our choice. In this case, an independent

contact interaction is also forbidden due to the HE constraint.

The next step is to calculate the amplitude with one insertion of a dimension six

operator MBSM(1W2W̄ 3−γ 4
+
γ ). The SM-like part gives the same result as eq. (5.6), with

the appropriate couplings. For the non-minimal coupling in the vertex M̂(−qW2W̄ 4−γ ), we
can use the [3−, 4+〉-shift of eq. (5.1). One of the 3-point amplitudes corresponds to the

non-minimal coupling of eq. (4.10) and we obtain:

M̂BSM,−
t =

(
1

vmW
GWW̄γ +

v

mWΛ2
CWW̄γ

)
m2

W

s (t−m2
W )

× (5.13)

×
{
v C−

WW̄γ

Λ2

(
〈31〉[42] + 〈32〉[41]

)
〈31〉〈32〉[4 3] +

C′−
WW̄γ

Λ2

〈12〉[4 3]
mW

〈31〉〈32〉〈3|p2|4]
}

.

Then, M̂BSM,+
t can be obtained by parity and the u-channel using crossing symmetry.

Summing the t and u contributions and keeping just O(Λ−2) terms leads to

MBSM,−(1W2W̄ 3−γ 4
+
γ ) =

(GWW̄γ

Λ2

)
1

(t−m2
W ) (u−m2

W )
× (5.14)

×
{
C−
WW̄γ

mW

(
〈31〉[42] + 〈32〉[41]

)
〈31〉〈32〉[4 3] + C′−

WW̄γ
〈12〉〈31〉〈32〉〈3|p2|4][4 3]

}
,

which factorizes correctly in all channels. For the non-minimal coupling in the vertex

M̂(1W 3−γ qW̄ ) we obtain the same result with 〈. . .〉 ↔ [. . .] and 3 ↔ 4. Before discussing

the non-factorizable contributions, let us analyse the HE of eq. (5.14). Naively, we can

just ‘unbold’ the amplitude and by the LG we can see that the term C−
WW̄γ

contributes to

amplitudes with longitudinal W ’s, and C′−
WW̄γ

contributes at leading order to an amplitude

with two transverse W ’s with the same polarization, which has the same structure as

the gluon scattering with a G3 insertion [28]. Notice that the factorizable terms of the
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amplitude can also be obtained without BCFW, and just starting with an ansatz and

requiring consistent factorization [18]. However, both methods fail to get the polynomial

terms correctly. Since the term of eq. (5.7) is forbidden, the next candidate for contact

interaction is

C−
WW̄γγ

v2 Λ2

(
〈31〉[42] + 〈32〉[41]

)2

. (5.15)

In this case, we know that the coefficient C−
WW̄γγ

is related to the 3-point vertex, as the

information about the gauge symmetries of the theory are already in the map of table 4.

Then, we can do the matching to the Feynman calculation, which means impose that the 4-

point contact interaction is proportional to the 3-point amplitude if one leg corresponds to

the Higgs vev, i.e. Chhγγ ≡ (2/v̄) Chγγ . Now, as discussed in section 4, the Goldstone boson

equivalence theorem can be seen in the HE of the massive amplitudes. This implies that

the contact interactions Chhγγ and C−
WW̄γγ

have the same form. We leave the exploration

of a bottom-up approach to obtain the non-factorizable interactions for a future work.

5.2 WW̄hh

In the case ofM(1W2W̄3h4h), one may expect a bad large-z behaviour doing a BCFW shift

due to the pure scalar amplitude with longitudinal W ’s and the Higgs. However, we may

reconstruct the SM amplitude from the residues at the poles and requiring a well-behaved

UV. The full amplitude can be written as

M(1W2W̄3h4h) =
Rt

t−m2
W

+
Ru

u−m2
W

+
Rs

s−m2
h

+ GWW̄hh〈12〉[12] , (5.16)

where the form of the non-factorizable contribution is fixed by the SU(2) LG12 and we will

discuss how to obtain GWW̄hh in the following. First, we can easily calculate the residues

by just ‘gluing’ the corresponding 3-point amplitudes:

Rt = M(1WqW̄3h)M(−qW2W̄4h)|t→m2

W
=

(GWW̄h)
2

v2

(
〈1q〉[1q]

)(
〈q2〉[q2]

)
,

Rs = M(1W2W̄qh)M(−qh3h4h)|s→m2

W
= (GWW̄h)(Ghhh)

(
〈12〉[12]

)
, (5.17)

where q is the momentum in the corresponding factorization channel. The residue in the

u-channel can then be obtained as Ru = Rt (3 ↔ 4). Notice that we have to sum over the

SU(2) indices of the internal particle such that

(
〈1q〉[1q]

)(
〈q2〉[q2]

)
=

(
〈1J1qJ〉[1K1qK ]+ 〈1J1qK〉[1K1qJ ]

)(
〈qJ2

J2〉[qK2K2]
)

= −m2
1 〈1

J12J2〉[1J12J2]+ 〈1J1 | pq |2K2 ]〈2J2 | pq |1K1 ] , (5.18)

12The structures 〈12〉2 and [12]2 are also consistent with the LG, but are not linearly independent as

can be written in terms of 〈12〉[12] using that 2p1 · p2 = s− 2m2

h.
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where pq = p1+p3 for the t-channel. Summing all the residues, we can use Gi from table 3

and write eq. (5.16) as

M(1W2W̄3h4h) =
(GWW̄h)

2

v2

[〈1|p3|1]〈2|p4|2]
t−m2

W

+
〈1|p4|1]〈2|p3|2]

u−m2
W

]
(5.19)

×
[
− (GWW̄h)

2m2
W (2m2

h − s)

v2(t−m2
W )(u−m2

W )
− (GWW̄h)(Ghhh)

(s−m2
h)

+ GWW̄hh

]
〈12〉[12] .

For the longitudinally polarized W ’s, in the HE limit we have that MHE →
(GWW̄h)

2s/(2v2) + GWW̄hhs and demanding that the amplitude asymptotes to a constant

in the UV, we have

GWW̄hh = −1

2

(GWW̄h)
2

v2
= − 2

v2
, (5.20)

which reproduces the Feynman rules calculation. This should not be a surprise, since the

3- and 4-point contact interactions are connected by a gauge symmetry in the Lagrangian

language, which means that the higher point contact interactions of this type are fixed by

the coefficient of the 3-point amplitude.

Moving to the SMEFT amplitude, the SM-like part gives the same result as eq. (5.19)

with the replacement GWW̄h → CWW̄h and one of GWW̄hh → CWW̄hh. However, we cannot

use the same argument as before to obtain the new coefficient of the 4-point contact interac-

tion CWW̄hh, since for the SMEFT the amplitude actually grows with s/v2. In this case, we

can proceed similarly to the WWγγ amplitude and use the relation CWW̄hh ≡ (2/v̄) CWW̄h.

This channel can be particularly interesting to study the origin of the electroweak

symmetry breaking. For example, one may explore the difference between SMEFT and

HEFT, where the symmetry is linearly and non-linearly realized, respectively [52–54].

6 Conclusion

In this paper, we started the exploration of the massive SMEFT in terms of on-shell am-

plitudes using the formulation of massive spinors of [13]. Although the kinematic structure

is fixed by Lorentz invariance, LG and Bose symmetry, it is not clear how the informa-

tion about the UV symmetries and the relation between amplitudes should appear in the

on-shell language.

As a first step, we draw a map between the parameters of the SMEFT Lagrangian and

the coefficients of the on-shell amplitudes using the Feynman rules derived in [46]. We also

discussed how the BCFW recursion relation can be applied for the massive SM WWγγ

scattering. Similar calculations could also be done for other SM processes as e.g. WWhγ

or with a Z boson instead. It also should be worthwhile to develop a more systematic

way to analyse the large-z behaviour and in addition, study general recursion relations.

For instance, a lot of progress was made using the soft and collinear limits in the massless

and/or supersymmetric cases and one may ask if a similar approach can be useful also in

the massive case, especially for the SMEFT.

Another question is how the difference between a linear and a non-linear realization of

the electroweak symmetry arises in this language. In other words, it would be interesting
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to see how HEFT and SMEFT are described at the on-shell level and if this can shed some

light on the description of the spontaneous symmetry breaking [22]. Moreover, we are just

working at tree-level, but there are several avenues to pursue loop calculation also with

massive particles. We hope that this may be an initial step towards a deeper understanding

of the intersection of on-shell amplitudes and SMEFT.
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A Review of massless and massive spinors

In the massless case, the Lorentz algebra SL(2,C) can be decomposed into SU(2)× SU(2)

and the momentum bi-spinor is written as

pαβ̇ = λαλ̃β̇ ≡ |p〉α[p|β̇ ,

which is the contraction of 4-momentum with σµ

αβ̇
= (1, ~σ) and σ̄α̇β

µ = (1,−~σ) where σi are

the Pauli matrices. The polarization vectors for a massless spin-1 particle is given by

ǫµ+ =
〈ζ|σµ|λ]√
2〈λζ〉

, ǫµ− =
〈λ|σµ|ζ]√
2[λζ]

, (A.1)

where λ represents the particle spinor and ζ 6= λ an arbitrary reference spinor. The little

group, i.e. the group of transformations that leave the on-shell momenta invariant, is U(1)

for massless particles which means that |p〉 → t |p〉 and |p] → t−1 |p].
For the massive case detpαβ̇ = m2 and as the little group is SU(2) we can decompose

the momentum in terms of 4 spinors as [13]

pαβ̇ = χI
αǫIJ χ̃

J
β̇
≡ ǫIJ |p〉Iα[p|Jβ̇ ,

where α, β are SL(2,C) indices, I, J = {1, 2} are SU(2) indices. For clarity, we use bold to

indicate the quantities related to massive particles although it will be clear from the SU(2)

indices. For a massive spin-1 particle, we can define a polarization tensor as

[ǫµ]JK =
1√
2m

〈
χJ |σµ|χK

]
,

where the symmetrization on SU(2) indices is implicit.
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B High energy limit of SMEFT amplitudes

For pµ = (E,Psθcφ, Psθsφ, P cθ) we have E2 − P 2 = m2 and the explicit solution for the

spinors is given by,

χI
α =

(√
E − P c −

√
E + P s∗

√
E − P s

√
E + P c

)
, χ̃J

β̇
=

(√
E − P c −

√
E + P s

√
E − P s∗

√
E + P c

)
,

which can be written as

χI
α =

√
E − Pζ+α (θ)⊗ ζ− I−

√
E + Pζ−α (θ)⊗ ζ+ I ,

χ̃J
β̇
=

√
E + P ζ̃−

β̇
(θ)⊗ ζ+ J+

√
E − P ζ̃+

β̇
(θ)⊗ ζ− J , (B.1)

making clear that the two indices belong to two different spaces. The high energy limit

can be obtain taking m/E ≪ 1, leading to the following

√
E + P ≈

√
2E

( m

2E

) √
E − P ≈

√
2E

(
1− m2

8E2

)
. (B.2)

It is useful to define

λ =
√
E + P ζ−(θ), λ̃ =

√
E + P ζ̃+(θ), (B.3)

η =
√
E − P ζ+(θ), η̃ =

√
E − P ζ̃−(θ),

from which follows immediately that η and η̃ are suppressed by a mass term while λ and

λ̃ are the massless spinors. With these, we can write the massive spinors as:

χJ
α = −λαζ

J
+ + ηαζ

J
−, χ̃J

β̇
= λ̃β̇ζ

J
− + η̃β̇ ζ̃

J
+ . (B.4)

where, 〈λη〉 = −[λ̃η̃] = m, leading to the following assignments

χ1
α = ηα, χ2

α = λα, χ̃1

β̇
= λ̃β̇ , and χ̃2

β̇
= −η̃β̇ (B.5)

With those, we have the 〈2I3J〉 and [2I3J ] as

〈2131〉 = 〈η2η3〉, 〈2132〉 = 〈η23〉, 〈2231〉 = 〈2η3〉, 〈2232〉 = 〈23〉,

[2131] = [23], [2132] = −[2η3], [2231] = −[η23], [2232] = [η2η3], (B.6)

which enable us to write the massive spinors in the HE limit as

χI
α ≈

√
2E




m
2E c

(
−1 + m2

8E2

)
s∗

m
2E s

(
1− m2

8E2

)
c


 , χ̃J

β̇
=

√
2E




m
2E c

(
−1 + m2

8E2

)
s

m
2E s∗

(
1− m2

8E2

)
c


 .

Writing the Lorentz invariants as matrices in the SU(2) Little-Group space, at order O(m2)

we have that:

〈12〉IJ ≈



(
1− m2

1

8E2

1

− m2

2

8E2

2

)
〈12〉 − m2√

2E2

〈1η2〉

− m1√
2E1

〈η12〉
m1m2

4E1E2
[12]


 ,

[12]IJ ≈




m1m2

4E1E2
〈12〉 − m1√

2E1

[η12]

− m2√
2E2

[1η2]
(
1− m2

1

8E2

1

− m2

2

8E2

2

)
[12]


 .
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M(1h2V 3V ) 〈23〉[23] 〈23〉2 [23]2

(1h, 2
+
V , 3

+
V ) - - [23]2

(1h, 2
−
V , 3

−
V ) - 〈23〉2 -

(1h, 2
+
V , 3

−
V ) −[21]2[31]−2 [21]2[31]−2 [21]2[31]−2

(1h, 2
−
V , 3

+
V ) −[31]2[21]−2 [31]2[21]−2 [31]2[21]−2

(1h, 2
+
V , 3

0
V ) [12][23][31]−1 - [12][23][31]−1

(1h, 2
−
V , 3

0
V ) 〈12〉〈23〉〈31〉−1 〈12〉〈23〉〈31〉−1 -

(1h, 2
0
V , 3

+
V ) [23][31][12]−1 - [23][31][12]−1

(1h, 2
0
V , 3

−
V ) 〈23〉〈31〉〈12〉−1 〈23〉〈31〉〈12〉−1 -

(1h, 2
0
V , 3

0
V ) - - -

Table 5. High-Energy limit of the three independent structures of the M(1h2V 3V ) amplitude.

Entries denoted by ‘-’ appears only at order O(m3/E3). The SMEFT coefficients were omitted for

convenience, see eq. (4.4) for the full massive amplitude.

M(1W2W̄ 3−γ ) x−1[12]2 [12]〈23〉〈31〉 〈12〉〈23〉〈31〉

(1+W , 2+
W̄
, 3−γ )

[21]3

[31][32]
[21]3

[31][32] -

(1−W , 2−
W̄
, 3−γ ) - - 〈12〉〈23〉〈31〉

(1+W , 2−
W̄
, 3−γ ) − 〈23〉3

〈12〉〈13〉 − 〈23〉3

〈12〉〈13〉 -

(1−W , 2+
W̄
, 3−γ ) − 〈13〉3

〈12〉〈23〉 − 〈23〉3

〈12〉〈13〉 -

(1+W , 20
W̄
, 3−γ ) - - -

(1−W , 20
W̄
, 3−γ ) - - -

(10W , 20
W̄
, 3−γ )

〈13〉〈23〉
〈12〉 - -

Table 6. High-Energy limit of the three independent structures of the M(1W2W̄ 3−γ ) amplitude.

Entries denoted by ‘-’ appears only at order O(m3/E3). The SMEFT coefficients were omitted for

convenience, see eq. (4.10) for the full massive amplitude.

For the WW̄γ case is important to recall the HE limits of the x and x−1 factors, which are

given by

x =
〈ζ|p2|3]
〈ζ3〉

→ [13][23]

[12]
, x−1 =

〈3|p2|ζ]
[ζ3]

→ −〈13〉〈23〉

〈12〉
. (B.7)

Once we have the HE limit of the building blocks, it is straightforward to obtain the

HE for the massive 3-point amplitudes of section 4. As an example, we show in tables 5

and 6 the HE of the amplitude M(1h2
I1,2
V 3

I1,2
V ) and M(1W2W̄ 3−γ ) at leading order in the

(m/E) expansion.

C 3-point massive amplitudes

Any amplitude with a mix of massive and massless legs can be written by stripping the

massive spinors and constructing the rest with massless little group restriction. Here we

are following closely ref. [13].
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C.1 Two massless + one massive particles

An amplitude with a massive particle with spin s and mass m and two massless particles

with helicity hi can be decomposed stripping out the SU(2) massive indices as

M(1I1··· I2s 2h2 3h3) = M{α1···α2s}χI1
α1

· · · χI2s
α2s

= M̃{α̇1···α̇2s} χ̃I1
α̇1

· · · χ̃I2s
α̇2s

, (C.1)

with the stripped amplitude written as

M{α1···α2s} = g [2 3]s+h2+h3

(
λs+h3−h2

2 λs−h3+h2

3

){α1···α2s}
, (C.2)

or

M̃{α1···α2s} = g 〈2 3〉s+h2+h3

(
λ̃s+h3−h2

2 λ̃s−h3+h2

3

){α1···α2s}
, (C.3)

where Ia = 1, 2 with a = 1 · · · 2s are SU(2) indices and dimensional analysis gives [g] =

1−(3s+h2+h3). A non-trivial constrain on the amplitude comes from that the expression

above only exist if |h3 − h2| ≤ s.

C.2 One massless + two massive particles

An amplitude with two massive particles with spin s1, s2 and mass m1,m2 coupling with

one massless particle with helicity h3 can be decomposed as

M(1I1··· I2s1 2J1··· J2s2 3h3) = M{α1···α2s1
}{β1···β2s2

}χI1
α1

· · · χI2s1
α2s1

ψJ1
β1

· · · ψJ2s2
β2s1

. (C.4)

In the case that m1 6= m2, the spinors uα ≡ λα
3 and vα ≡ p1(σαα̇λ̃

α̇
3 )/

√
m1m2 span the

entire 2D spinor space allowing the amplitude to be written as

M{α1···α2s1
}{β1···β2s2

} =
C∑

i=1

gi

(
us1+s2+h3vs1+s2−h3

){α1···α2s1
}{β1···β2s2

}
,

where C = 2min(s1, s2) + 1 is the number of different partitions of the two groups of

SL(2,C) indices.

In the case that m1 = m2 we need to define the auxiliary objects,

x ≡ 〈ζ|p1|3]
〈3 ζ〉 , x−1 ≡ 〈3|p1|ζ̃]

[ζ̃ 3]
, (C.5)

where 3 is the label of the massless particle. The amplitude is then given by

M{α1···α2s1
}{β1···β2s2

} =
s1+s2∑

i=|s1−s2|
gi (mx)h+i

(
λ2i
3 ε

s1+s2−i
){α1···α2s1

}{β1···β2s2
}
. (C.6)

where [gi] = 1− i− s1 − s2.

C.3 Three massive particles

For amplitudes with three massive particles, one should write all possible terms consistent

with the little group. These are not so many structure as 〈i i〉 = [i i] = 0 after the sym-

metrization of the SU(2) indices. Also, structures with a momentum insertion can be rewrit-

ten in terms of contraction of angle and square brackets with the use of Schouten identities.
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D Useful identities

In the following we are going to list useful identities for the manipulation of the massive

amplitudes. For σµ and σ̄µ we can write that

σµ
αα̇ = ǫαβǫα̇β̇σ̄

ββ̇
µ , σ̄αα̇

µ = ǫαβǫα̇β̇σµ

ββ̇
. (D.1)

Therefore, the Fierz identities for σ matrices can be written as

[σµ]αα̇[σ
ν ]αα̇ = 2ǫαβǫα̇β̇ ,

[σµ]αα̇[σ
ν ]αα̇ =

1

2
([σµ]αβ̇ [σ

ν ]β̇α̇ + [σν ]αβ̇ [σ
µ]β̇α̇2η

µνǫαβǫα̇β̇ + iǫµνρσ[σρ]αβ̇ [σ
σ]β̇α̇) .

With these identities, one can write the Fierz identities for the spinors (omitting the SU(2)

indices):

〈1|σµ|2] 〈3|σµ|4] = −2〈13〉[24] ,

〈1|qσ|2] 〈3|qσ|4] = 〈1|qσ|4] 〈3|qσ|2] + q2〈13〉[24] ,

〈1|σµ|2] 〈3|σν |4] = 1

2

{
〈1|σµ|4] 〈3|σν |2]+〈1|σν |4] 〈3|σµ|2]

+ 2ηµν〈13〉[24]+ iǫµνρσ 〈1|σρ|4] 〈3|σσ|2]
}
.

The Schouten identity is given by

〈12〉〈34〉− 〈13〉〈24〉+ 〈14〉〈23〉 = 0 , (D.2)

and similarly for the square brackets. We can also write this directly in terms of polarization

vector contractions:

〈1|σµ|2] 〈2|σν |1] = (m1m2){ǫµ1 ǫν2 + ǫµ1 ǫ
ν
2 + ηµν(ǫ1 · ǫ2) + iǫµνρσǫ1ρǫ2σ} , (D.3)

and, for three massive vectors, we can write

(ǫi · ǫj)(ǫk · p) = −
(
〈ij〉[ij] 〈k|p|k]√

2mimjmk

)
,

(ǫk · p)(ǫi · pj)(ǫj · pi) = − 〈k|p|k]
2
√
2mk

(
〈ij〉〈ij〉+ [ij][ij]− Mk〈ij〉[ij]

mimjmk

)
,

i(ǫk · p)εµνρσpµj pνi ǫσj ǫ
ρ
i = − 〈k|p|k]

2
√
2mk

(
〈ij〉〈ij〉− [ij][ij]

)
, (D.4)

where Mk = m2
k −m2

i −m2
j .
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