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1 Introduction

It is difficult to overstate the importance of conformal field theories (CFTs). They serve

as the endpoints of renormalization group flows, they are realized in numerous condensed

matter systems at second order phase transitions, they appear to describe consistent the-

ories of quantum gravity through the AdS/CFT correspondence, and they may play some

interesting role in physics beyond the Standard Model. While CFTs are in general strongly

coupled and difficult to study using the conventional techniques of perturbation theory, it

has become apparent in recent years that the conformal bootstrap [1] approach — studying

the general constraints from symmetries, unitarity, and associativity of the operator prod-

uct expansion (OPE) — can be highly successful at making predictions for CFTs in any

space-time dimension [2–23]. The bootstrap is particularly interesting for supersymmetric

theories [5, 8, 9, 16, 22, 23], where in addition to having extra symmetry and stronger
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unitarity constraints, we typically have a greater handle on the space of such theories as

well as knowledge of protected aspects of the spectrum.

An essential ingredient to pursuing the conformal bootstrap is knowing how to decom-

pose 4-point functions into conformal blocks (or conformal partial waves) corresponding to

the exchange of primary operators and all of their descendants. In superconformal theories,

4-point functions can be decomposed into superconformal blocks, corresponding to the ex-

change of superconformal primary operators and all of their superconformal descendants.

Past work on superconformal blocks in 4d includes [24, 25] in N = 2, 4 and [5, 26] in N = 1.

In the present paper, we develop two complementary approaches to understanding

superconformal blocks, focusing on 4d superconformal field theories. The first approach

is to utilize the fact that superconformal blocks can be viewed as eigenfunctions of the

super-Casimir differential operator. This approach is particularly straightforward when

applied to 4-point functions containing two chiral and two anti-chiral operators, and we

derive simple expressions for the corresponding superconformal blocks for any number of

supersymmetries N . However, this approach becomes more cumbersome when applied to

more general operators, where the superconformal block can depend on a large number of

nilpotent superconformal invariants.

The second approach is to generalize the shadow formalism of Ferrara, Gatto, Grillo,

and Parisi [27–30], recently developed further in [31], to superconformal theories. The

original idea is that given a CFT operator O(x) of dimension ∆ in a d−dimensional CFT,

one can define a non-local shadow operator Õ(x) with dimension ∆̃ = d − ∆. Then the

integral ∫
ddxO(x)|0〉〈0|Õ(x) (1.1)

is dimensionless, invariant under conformal transformations, and can be inserted into four-

point functions as a projector onto the corresponding conformal block:∫
ddx〈φ(x1)φ(x2)O(x)〉〈Õ(x)φ(x3)φ(x4)〉 ∝ gO(xi) + “shadow block”, (1.2)

where the shadow block can be easily subtracted off. Similarly, we will show how in a 4d

N = 1 SCFT one can take a superconformal primary operator on superspace O(x, θ, θ)

and define a non-local “supershadow” operator Õ(x, θ, θ). Then by constructing a super-

conformally-invariant projector we can project 4-point functions onto simple integral ex-

pressions for superconformal blocks. We also apply this method to 4-point functions con-

taining two chiral and two antichiral operators in theories withN -extended supersymmetry,

reproducing the results obtained from the super-Casimir approach. In a companion pa-

per [32] we will further apply it to 4-point functions of real scalar operators in 4d N = 1

theories.

Both of the two approaches are simplest when described in supertwistor or superem-

bedding space, where the action of the superconformal group SU(2, 2|N ) is linearly real-

ized [33–42]. We review this formalism in section 2. In section 3 we study the super-Casimir

differential equation, focusing on 4-point functions containing chiral operators. In section 4
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we develop an approach to superconformal blocks based on supershadow operators and ap-

ply it to the 4-point function containing chiral operators. We conclude in section 5.

2 Superembedding methods

2.1 Superspace from supertwistors

In this section, we review the construction of superspace in terms of objects which trans-

form linearly under superconformal transformations. We closely follow the discussion

of [35, 39, 41], though our notation and conventions are slightly different. Our construction

will enable us to describe certain local operators in a way that makes their superconformal

transformation properties manifest. In particular, it will be sufficient to describe gen-

eral N = 1 superconformal multiplets and some N > 1 multiplets.1 More complicated

constructions are required for describing arbitrary multiplets in theories with extended su-

persymmetry [44–49]. It would be interesting to generalize the techniques in this paper to

incorporate all N > 1 multiplets.

The building blocks of our construction are supertwistors [50],

ZA =

ZαZα̇
Zi

 ∈ C4|N , (2.1)

which have four bosonic components Zα, Z
α̇ and N fermionic components Zi. The super-

conformal group SU(2, 2|N ) is the subgroup of SL(4|N ) that preserves the inner product

〈Z1, Z2〉 = Z†1ΩZ2, Ω =

 0 δβ̇ α̇ 0

δβ
α 0 0

0 0 δj
i

 . (2.2)

Objects of the form Z ≡ Z†Ω transform in the dual representation to the supertwistors

ZA. We will call them “dual supertwistors,” with components

Z
A

=
(
Z
α
Zα̇ Z

i
)
, (2.3)

so that Z
A
1 Z2A is SU(2, 2|N ) invariant.

Chiral superspace, with coordinates (xα̇α+ , θαi ), is equivalent to the space of two-planes

in supertwistor space. To see why, note that two-planes are spanned by a pair of super-

twistors ZaA, a = 1, 2, subject to a GL(2,C) gauge redundancy that acts as a change of

basis

ZaA ∼ ZbAgb
a, gb

a ∈ GL(2,C). (2.4)

1The precise statement is that it can describe multiplets whose superconformal primary is invariant under

a nonabelian R-symmetry group. This includes all N = 1 multiplets, since there the R-symmetry group

is U(1). However, it does not include many interesting multiplets in theories with N = 2, 4, for instance

the N = 4 stress-tensor multiplet. Four point functions of some of these extended SUSY multiplets are

discussed in [24, 25, 43].
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Here, “∼” means “is equivalent to.” Under the action of this GL(2,C), a generic pair of

supertwistors ZaA can be rotated to the form

ZaA =

 δα
a

ixα̇a+

2θai

 . (2.5)

We refer to this choice of gauge as the “Poincare slice”.

As we see above, the Poincare slice is parameterized by a bosonic vector xα̇a+ and N
fermionic spinors θai , which are the usual coordinates on chiral superspace.2 The advantage

of describing them with the above coset construction is that it makes their transformation

law under SU(2, 2|N ) completely manifest. If M ∈ SU(2, 2|N ) is a superconformal trans-

formation, then we first transform ZaA →MA
BZaB. We then choose a matrix g ∈ GL(2,C)

such that MA
BZbBgb

a returns back to the Poincare slice. The composition of these two

transformations defines a map (x+, θ)→ (x′+, θ
′) representing the action of SU(2, 2|N ): δα

a

ixα̇a+

2θai

 = ZaA → MA
BZaB ∼ MA

BZbBgb
a =

 δα
b

ix′α̇a+

2θ′ai

 . (2.6)

This precisely reproduces the usual action of the superconformal group on chiral superspace.

We can similarly describe anti-chiral superspace with the dual twistors Z
ȧA

. However,

together the objects ZaA, Z
ȧA

describe 8 real bosonic degrees of freedom (the complex vector

x+) and 4N fermionic degrees of freedom (the spinors θαi , θ
iα̇

). We need 4 real bosonic

constraints to recover the correct degrees of freedom to describe superspace. Furthermore,

these constraints should be superconformally covariant. The only possibility is

Z
ȧA
ZaA = 0, a, ȧ = 1, 2. (2.7)

In components, this implies

xα̇α+ − (x†+)α̇α − i4θα̇iθαi = 0, (2.8)

which can be solved by writing xα̇α± = xα̇α±2iθ
α̇i
θαi , x− = x†+, with x real. In this way, we

recover the usual relation between superspace coordiantes (x, θ, θ) and chiral coordinates

(x+, θ).

In what follows, it will often be useful to consider complexified superspace. For exam-

ple, correlation functions of local operators can be analytically continued, so they naturally

live in complexified superspace. We will also discuss superspace integration, where one can

consider different real contours inside complexified superspace. In terms of supertwistors,

complexification simply means we regard ZaA and Z
ȧA

as independent, each with their own

GL(2,C) redundancy

ZaA ∼ ZbAgba, Z
ȧA ∼ gȧḃZ

ḃA
, (2.9)

2The tensor δα
a in the upper two components of (2.5) lets us identify the GL(2,C) index a with a

left-spinor index α.
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and subject to the (now complex) condition (2.7). The independent supertwistor Z and

dual supertwistor Z transform such that the pairing Z
A
ZA is invariant under the complex-

ified superconformal group SL(4|N ).

2.2 Superembedding space

To describe superspace in terms of supertwistors, we were forced to introduce the GL(2,C)×
GL(2,C) redundancies (2.9). Physical quantities should be independent of these redundan-

cies, so it’s useful to work with objects which transform simply under them. This motivates

the introduction of bitwistors

XAB ≡ ZaAZbBεab, X
AB ≡ Z ȧAZ ḃBεȧḃ, (2.10)

which are well-defined up to rescaling

(X,X) ∼ (λX, λX), λ = det g, λ = det g. (2.11)

The bitwistor X (and similarly X) satisfies the graded antisymmetry relation,3

XAB = −(−1)pApBXBA, pA =

{
0 if A = α, α̇,

1 if A = i.
(2.12)

By construction, (X,X) also satisfy the equations

X
AB
XBC = 0, (2.13)

and

X[ABXC}D = 0, X
[AB

X
C}D

= 0, (2.14)

where [. . . } denotes graded antisymmetrization of indices.

The space in which (X,X) live is called “superembedding space.” Instead of begin-

ning with supertwistors as we did above, it’s possible to describe superspace by working

entirely in superembedding space and imposing the equations (2.13), (2.14) together with

the redundancy (2.11), see for example [33, 35, 41]. Both points of view are useful.

Superconformal invariants are given by supertraces of products of X’s and X’s, for

example4

〈21〉 ≡ X
AB
2 X1BA, (2.15)

〈4321〉 ≡ X
AB
4 X3BCX

CD
2 X1DA(−1)pC . (2.16)

By construction, these invariants are chiral in unbarred coordinates and antichiral in barred

coordinates.

3Note that our definition of XAB differs from that in [33, 35], where they satisfy a different antisymmetry

condition.
4The factor (−1)pC is necessary to preserve superconformal invariance, since C is contracted from bottom

to top, while the superconformally invariant pairing is defined with indices contracted top to bottom.
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On the Poincare slice, the bitwistors XAB and X
AB

are given by

XAB =

 εαβ −i(x+ε)α
β̇ 2θjα

i(x+ε)
α̇
β −x2

+ε
α̇β̇ 2i(x+θj)

α̇

−2θiβ −2i(x+θi)
β̇ 4θiθj

 , (2.17)

X
AB

=

 −x2
−ε

αβ i(εx−)αβ̇ −2i(θ
j
x−)α

−i(εx−)α̇
β εα̇β̇ 2θ

j
α̇

2i(θ
i
x−)β −2θ

i
β̇ −4θ

i
θ
j

 . (2.18)

A quantity that will appear frequently is the two-point invariant, which becomes

〈21〉 = −2
(
x2− − x1+ + 2iθ1σθ2

)2
(Poincare slice). (2.19)

2.3 Lifting N = 1 fields to superembedding space

The superembedding space we’ve constructed is capable of describing all superconformal

multiplets in N = 1 theories, and some special multiplets in theories with extended SUSY.

In this section, we briefly summarize the procedure for uplifting fields to superembedding

space [33–35], focusing on the N = 1 case.5 A four-dimensional N = 1 superconformal

primary superfield is labeled by its SL(2,C) Lorentz quantum numbers ( j2 ,
j
2), its scaling

dimension ∆, and its U(1)R charge R. It is convenient to summarize these labels as

( j2 ,
j
2 , q, q), where the superconformal weights q, q are defined by

q ≡ 1

2

(
∆ +

3

2
R

)
, q ≡ 1

2

(
∆− 3

2
R

)
. (2.20)

A scalar primary φ(x, θ, θ) ∼ (0, 0, q, q) simply gets lifted to a homogeneous scalar

Φ(X,X) on superembedding space [33],

φ −→ Φ, (2.21)

Φ : (q, q) , (2.22)

where the notation in eq. (2.22) is shorthand for Φ(λX, λX) = λ−qλ
−q

Φ(X,X).

Handling more general Lorentz representations requires uplifting spinors. A spinor

primary φα ∼
(

1
2 , 0, q, q

)
gets lifted to a homogeneous dual twistor,

φα −→ ΦA, (2.23)

ΦA :

(
q +

1

2
, q

)
. (2.24)

Similarly, a conjugate spinor φα̇ ∼ (0, 1
2 , q, q) gets lifted to a twistor ΦA with homogeneity

ΦA : (q, q + 1
2).

5This is a supersymmetric version of what was presented in [31].
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The relation between the four-dimensional superfields and their superembedding coun-

terparts is simple,

φ(x, θ, θ) = Φ(X,X)
∣∣
Poincare

, (2.25)

φα(x, θ, θ) = ΦB(X,X)XBα

∣∣
Poincare

, (2.26)

φα̇(x, θ, θ) = X
α̇B

ΦB(X,X)
∣∣∣
Poincare

, (2.27)

where the right-hand side is restricted to the Poincare slice. For operators with spin,

we see that contraction with the bitwistors X,X projects Φ → φ. In particular, since

X
AB
XBC = 0, there is a gauge-redundancy in the definition of the uplifted field, for

instance

ΦA ∼ ΦA +X
AB

ΨB. (2.28)

The spinor case generalizes readily. A generic superfield φ
β̇1···β̇j
α1···αj ∼ ( j2 ,

j
2 , q, q) lifts to

a gauge-redundant multi-twistor Φ
A1···Aj

B1···Bj
with homogeneity Φ : (q + j

2 , q + j
2). It is

convenient to introduce index-free notation by using auxiliary twistors SA, S
A

to absorb

the indices of the superembedding fields. Thus, we define

Φ(X,X, S, S) ≡ SBj · · ·SB1Φ
A1···Aj

B1···Bj
SAj · · ·SA1 . (2.29)

In this language, the gauge-redundancy of Φ allows us to restrict S, S to be transverse and

null6

XS = 0, SX = 0, SS = 0. (2.30)

Finally, the four-dimensional superfield is recovered by

φ
β̇1···β̇j
α1···αj =

1

j!

1

j!

(
X
−→
∂S

)β̇1

· · ·
(
X
−→
∂S

)β̇j
Φ(X,X, S, S)

(←−
∂SX

)
α1

· · ·
(←−
∂SX

)
αj

∣∣∣∣
Poincare

.

(2.31)

In what follows, we will be interested primarily in chiral superfields. In superembedding

space, chiral fields correspond to holomorphic fields Φ(X) [33], i.e. fields that depend only

on X, not X, and hence have q = 0. From the projection prescription, eq. (2.31), it is

evident that such a field can only project onto a chiral superfield if j = 0, so that no new

X dependence is introduced upon projection. This is consistent with the four-dimensional

constraint that chiral fields must have j = q = 0 [51]. Likewise, antichiral fields correspond

to antiholomorphic fields Φ(X) with j = q = 0.

2.4 Correlation functions

General constraints on superconformally covariant correlation functions were studied for

N = 1 theories in [51, 52] and for N = 2, 4 theories in [24, 53]. More recently, superem-

bedding methods were used to provide a manifestly covariant form for superconformal cor-

relators [33–42]. In superembedding space, correlators of fields Φ(X,X, S, S) are functions

of superconformal invariants built with Si, Si, Xi, and Xi that respect the homogeneity

6Nullness follows because the transverse conditions can be solved by S = XT , S = XT for some T, T .
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of the constituent fields. In the following discussion we will abbreviate the coordinates Xi

and Xi simply as i, i and suppress factors of (−1)pA .

There are two types of such invariants. The first consist of supertraces of coordinates

described in section 2.2, such as 〈ijk . . . l〉. There are an infinite number of such supertraces.

But for any given number of points, only a finite subset of them are independent. For

example, all 3-point invariants built with coordinates are functions of 6 non-vanishing

2-traces: 〈ij〉, where i, j = 1, 2, 3 and i 6= j.7

Correlation functions of scalar operators are built with such invariants only. In the

simple example of the 2-point function of scalar operators 〈Φ1(X1, X1)Φ2(X2, X2)〉, the

invariants available are 〈12〉 and 〈21〉. Imposing homogeneity, one finds that given Φ1 ∼
(0, 0, q, q), the correlator vanishes unless Φ2 ∼ (0, 0, q, q), in which case

〈Φ1(X1, X1)Φ2(X2, X2)〉 =
1

〈12〉q〈21〉q
. (2.32)

To write down the correlator consisting of operators with non-trivial Lorentz repre-

sentation, we need invariants that involve auxiliary twistors. In general, these are strings

such as Spijk . . . lSq. But not all of them are independent. The following facts facilitate

the construction of a non-trivial, independent set of such invariants:

• By transverseness, eq. (2.30), Si cannot be contracted with Xi, nor Si with Xi.

• As a consequence of the graded antisymmetry of X, eq. (2.12), SXT = 0 and SXT =

0.

• Eq. (2.14) can sometimes be used to reduce long strings of X’s and X’s, for instance

(iji)AB ∝ 〈ij〉iAB.

For the 2-point function 〈Φ1(X1, X1, S1, S1)Φ2(X2, X2, S2, S2)〉, the considerations

above restrict the independent invariants to 〈12〉, S212S1, and their complex conjugates.

Note that the auxiliary twistors only appear in the numerator and their total numbers are

restricted by eq. (2.29). Imposing homogeneity, one finds that given Φ1 ∼ ( j2 ,
j
2 , q, q), the

correlator vanishes unless Φ2 ∼ ( j2 ,
j
2 , q, q), in which case

〈Φ1(X1, X1, S1, S1)Φ2(X2, X2, S2, S2)〉 =
(S212S1)j(S121S2)j

〈12〉q+
3
2
j〈21〉q+

3
2
j
. (2.33)

The special case that Φ1 is chiral and Φ2 is antichiral is given by q = j = 0.

Similar considerations can be used to work out the three-point correlator of a chiral

scalar Φ ∼ (0, 0, qΦ, 0), its antichiral counterpart Φ† ∼ (0, 0, 0, qΦ), and a real spin-` tensor

O ∼ ( `2 ,
`
2 , q, q),

〈Φ(X1)Φ†(X2)O(X0, X0, S, S)〉 = λΦΦ†O
(S12S)`

〈12〉qΦ−q+
`
2 〈10〉q+

`
2 〈02〉q+

`
2

. (2.34)

This correlator will be a starting ingredient for our computation of chiral superconformal

blocks via shadow methods in section 4.4.

7For three points, there is one invariant cross-ratio, which can be taken to be u = 〈12〉〈23〉〈31〉
〈21〉〈32〉〈13〉 and which

can appear in three-point correlators of non-chiral fields. We will not need it here.
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3 Superconformal Casimir approach

Conformal partial waves represent the exchange of a definite irreducible representation of

the conformal group between pairs of operators. The conformal Casimir C(d)
N is an operator

that commutes with all conformal generators, so it must have a definite eigenvalue when

acting on any single irreducible representation. Thus the conformal partial waves can

be elegantly computed by the eigenvalue problem associated with the conformal Casimir,

represented as a differential operator acting on the space of conformally invariant functions.

Let us see how to generalize these ideas to superconformal partial waves.

As a warm-up that is interesting on its own, let us begin by generalizing the two

dimensional global or SL(2,C) conformal partial waves to superconformal symmetry. The

conformal algebra can be separated into commuting holomorphic and anti-holomorphic

parts; the holomorphic part is

[Ln, L0] = nLn and [L1, L−1] = 2L0, (3.1)

with n restricted to the values −1, 0, 1. The central charge does not appear in the global

conformal algebra. The holomorphic conformal Casimir

C(2)
0 = L2

0 −
1

2
(L1L−1 + L−1L1) (3.2)

commutes with each of the Ln. The global conformal partial waves in the representation

(h, h) of the full SL(2,C) have dimension ∆ = h + h and spin ` = h − h; these partial

waves are eigenvectors of the Casimir operator C(2)
0 with eigenvalue h(h− 1), and similarly

for the anti-holomorphic Casimir. To make this explicit one computes C(2)
0 as a differential

operator acting on the product φ(x1)φ(x2) within a 4-pt correlator, and then re-writes the

result in terms of conformally invariant cross-ratios.

3.1 N = 1 superconformal blocks in two dimensions

To generalize to global superconformal symmetry in two dimensions, we extend the holo-

morphic algebra to include the fermionic generators Gr, with r = ±1/2 and with the

(anti-)commutation relations

{Gr, Gs} = 2Lr+s and [Ln, G± 1
2
] =

(
n

2
∓ 1

2

)
G± 1

2
+n. (3.3)

This is the global part of the Neveu-Schwarz superconformal sector, where the r indices

of the Gr take half-integral values [54]. The index r takes integral values in the Ramond

sector, but this sector does not have a non-trivial global limit. Global superconformal

primaries are annihilated by both L1 and G 1
2
. The quadratic Casimir

C(2)
1 = L2

0 −
1

2
(L1L−1 + L−1L1) +

1

4

(
G+ 1

2
G− 1

2
−G− 1

2
G+ 1

2

)
(3.4)

commutes with all the generators. For a helpful review see e.g. [55]. To compute the

superconformal blocks [56] we need to represent this algebra as an action on superconformal

primaries.
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For this purpose it is sufficient to introduce a single fermionic coordinate θ; supercon-

formal primaries become functions of (x, θ), where x is a complex coordinate parameterizing

the 2-d Euclidean space. We can represent the action of the algebra on these coordinates as

L−1 = −∂x, (3.5)

L0 = −x∂x −
1

2
θ∂θ, (3.6)

L1 = −x2∂x − xθ∂θ, (3.7)

supplemented by the fermionic generators

G− 1
2

= ∂θ − θ∂x and G+ 1
2

= x∂θ − θx∂x. (3.8)

We will be studying a 4-pt correlator

A(xi, θi) = 〈φ(x1, θ1)φ(x2, θ2)φ(x3, θ3)φ(x4, θ4)〉 (3.9)

and so we need to determine on which superconformal invariants the correlator can depend.

The holomorphic coordinate differences

xij = xi − xj − θ1θ2 (3.10)

are supersymmetric, but not superconformally invariant. We can construct a pair of su-

perconformal invariants

u =
x12x34

x14x23
→ x1 − x2 − θ1θ2

x2
and v =

x13x24

x14x23
→ x1

x2
(3.11)

from the xij , where the latter relations follow when we use a conformal transformation to

set x3 = 0 and x4 =∞. We can write the correlator or partial wave in this limit as

G(x1, x2, θ1, θ2) =
1

(x1 − x2)2∆φ(x3 − x4)2∆φ

[
g0

(
1− x1

x2

)
+
θ1θ2

x2
gθ

(
1− x1

x2

)]
. (3.12)

In terms of the usual variable z = 1− x1
x2

, the conformal Casimir eigen-equation is

z2
(
(1− z)∂2

z − ∂z
)
g0 +

1

2
zgθ = qhg0(z), (3.13)[

z2(1− z)∂2
z + z(2− 3z)∂z − z +

1

2

]
gθ +

1

2
z
(
(1− z)∂2

z − ∂z
)
g0 = qhgθ(z),

where qh = h(h− 1
2) is the Casimir eigenvalue, where h is the L0 eigenvalue of the primary.

These equations can be solved in terms of hypergeometric functions as

g0(z) = zh2F1 (h, h, 2h, z) , (3.14)

gθ(z) = hzh−1
2F1 (h, h, 2h, z) . (3.15)
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3.2 N = 2 superconformal blocks in two dimensions

The N = 2 superconformal algebra has commutation relations

[Lm, Jn] = −nJm+n, {G+
r , G

−
s } = Lr+s +

1

2
(r − s)Jr+s +

c

6

(
r2 − 1

4

)
δs+r,0 (3.16)

{G+
r , G

+
s } = 0 = {G−r , G−s } [Lm, G

±
r ] =

(m
2
− r
)
G±r+m, [Jm, G

±
r ] = ±G±m+r

along with the standard relations for the Lm alone. Note the addition of the bosonic gen-

erator Jm, so that we have a new operator J0 in the global limit. The full Ramond and

Neveu-Schwarz algebras are isomorphic in the case of two dimensional N = 2 superconfor-

mal symmetry. However, since we are studying the global limit, we will again consider only

the NS sector. The N = 1 generators Gr are Gr = G+
r + G−r . One can see that dropping

Jm for m 6= 0 and taking r, s = ±1
2 and m,n = −1, 0, 1, the global algebra closes and the

central charge drops out of the commutation relations. The quadratic Casimir is

C(2)
2 = L2

0 −
1

4
J2

0 −
1

2
{L1, L−1}+

1

2
[G−+, G

+
−] +

1

2
[G+

+, G
−
−]. (3.17)

One can represent the N = 2 generators on superspace as

L−1 = −∂x, (3.18)

L0 = −x∂x −
1

2
θ1∂θ1 −

1

2
θ2∂θ2 , (3.19)

L1 = x2∂x − xθ1∂θ1 − xθ2∂θ2 , (3.20)

G+
− =

1√
2
∂θ1 −

1√
2
θ2∂x, (3.21)

G−− = − 1√
2
θ1∂x +

1√
2
∂θ2 , (3.22)

G+
+ =

1√
2
x∂θ1 +

1√
2
θ1θ2∂θ1 −

1√
2
θ2x∂x, (3.23)

G−+ =
1√
2
x∂θ2 −

1√
2
θ1θ2∂θ2 −

1√
2
θ1x∂x, (3.24)

J0 = −θ1∂θ1 + θ2∂θ2 . (3.25)

We can restrict to chiral and anti-chiral fields, meaning fields that are annihilated by

D and D, respectively:

D = ∂θ1 + θ2∂x,

D = ∂θ2 + θ1∂x. (3.26)

Then, a chiral field Φ(x, θ1, θ2) depends only on x− θ1θ2 and θ2, while an anti-chiral field

depends only on x+ θ1θ2 and θ1.

To compute the superconformal blocks [57] we need to specify the correlator and param-

eterize it in terms of superconformal invariants. First, we need to know the supersymmetric

distance between two points (x, θ1, θ2) and (y, η1, η2) in superspace. At linear (quadratic)
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order in the bosonic (fermionic) components, there are two linearly independent combina-

tions that are invariant under supersymmetric translations and have vanishing R-charge:

〈yx〉 ≡ (y − η1η2)− (x+ θ1θ2)− 2η2θ1,

〈xy〉 ≡ (x− θ1θ2)− (y + η1η2)− 2θ2η1. (3.27)

A correlator of generic fields can depend on both of these; however, when chiral or anti-

chiral fields are involved, clearly at most one of the above is allowed. Under conformal

inversions, individual points transform according to

R : x→ −1

x
, θ1 →

θ1

x
, θ2 →

θ2

x
(3.28)

Note that under inversions, the chiral position x− θ1θ2 just becomes the inverse of a chiral

position:

x− θ1θ2
R→ −1

x
− θ1θ2

x2
= − 1

x− θ1θ2
. (3.29)

Then, it is easy to see that the chiral-anti-chiral distance 〈xy〉 transforms as

〈xy〉 R→ 〈xy〉
(x− θ1θ2)(y + η1η2)

. (3.30)

With two chiral and two anti-chiral fields, we can therefore form the invariant u ≡ 〈12〉〈34〉
〈14〉〈32〉 .

We are restricting to purely holomorphic fields, in which case in turns out that this is the

only invariant. This means that our superconformal block depends only on u. Taking the

limit where the bosonic component of 4 goes to infinity and all components of 3 vanish,

this simplifies to

u → −
(

1− x

y
+
xη1η2 − 2yη1θ2 + yθ1θ2 − η1η2θ1θ2

y

)
. (3.31)

So, we can act with our Casimir in differential form on the function

g(u) = g0(z) +

(
xη1η2 − 2yη1θ2 + yθ1θ2

y

)
g2(z) +

x

y3
θ1θ2η1η2g4(z) (3.32)

where now z = 1 − x
y , and g2(z) = g′0(z), g4(z) = g′′0(z) − g′0(z)

1−z . We are computing the

blocks in the φ×φ† channel, so we take R-charge to be zero for the internal operator; thus

the eigenvalue of C(2)
2 is ∆2

4 . Acting with the Casimir equation, it is now straightforward

to find

g0(z) = zh2F1(h, h, 2h+ 1, z). (3.33)

As a check, one can use the fact that the anomalous dimension of chiral operators is

protected. As discussed in [14] section 2.3.1, this implies that the superconformal block

cannot have a log(1−z) singularity as z → 1, which is indeed true of the above expression.8

8In fact, this constraint combined with the fact that the N = 2 blocks must decompose into N = 0

blocks is independently sufficient to solve for g0(z). Let g0(z) = gN=0(h, z) + bgN=0(h+ 1, z), where gN=0

are the non-supersymmetric conformal blocks, and b is an arbitrary constant. Demanding that the log(1−z)
singularity cancel between the two blocks sets b = −h/(2(2h+1)), which provides an independent derivation

of g0(z) above.
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3.3 Chiral blocks in four dimensions

The same methods can be used to compute superconformal partial waves in four dimen-

sions. The main challenge that one faces in applying this method is the proliferation of

independent superconformal invariants. For this reason, the method is most feasible when

applied to superconformal partial waves with chiral and anti-chiral operators.

The N = 1 superconformal Casimir operator9 (in the conventions of appendix A

of [5]) is

C(4)
1 =

1

2
MµνM

µν −D2 +
3

4
R2 +

1

2
{Pµ,Kµ} − 1

4
[Qα, Sα]− 1

4
[Qα̇, Sα̇] (3.34)

and it takes the eigenvalue

cj,jq,q =
1

2
j(j + 2) +

1

2
j(j + 2) + (q + q)(q + q − 2)− 1

3
(q − q)2 (3.35)

when acting on a state created by a primary operator in the ( j2 ,
j
2) Lorentz representation

and (q, q) labels the superconformal representation.

Differential operators representing the superconformal generators are easiest to write

down in supertwistor space. Let us first define generators of GL(4|N ) which commute with

our GL(2)×GL(2) redundancies and preserve the pairing Z · Z,

LA
B ≡ ZaA

∂

∂ZaB
− Z ȧB ∂

∂Z
ȧA

(−1)pApB . (3.36)

The generators of the superconformal group are given by contracting with super-traceless

matrices T k, where k indexes the adjoint representation of SU(2, 2|N ),

(T k)B
ALA

B(−1)pB . (3.37)

To avoid keeping track of sign factors (−1)pApB , etc. coming from the grading of the

components of Z,Z, we can make use of the following trick. Let us pretend that Z,Z are

purely bosonic and transform under SL(n) for some n. SL(n) invariance will guarantee that

the n-dependence of our calculations always comes from the trace of the identity matrix

δAA = n. In the super case, this trace simply becomes a supertrace. In other words, we may

perform the computation pretending that Z,Z ∈ Cn×2, and then set n = 4−N to recover

the answer for the superconformal group SU(2, 2|N ).

As an example of this trick, let us recover the correct action of the superconformal

Casimir on a two-point function. The Casimir operator for SL(n) is

Cn = LA
BLB

A − 1

n
LA

ALB
B. (3.38)

Acting on a two-point function, we get

C(1)
n

1

〈12〉q〈21〉q
=

(
2q(2− n+ q) + 2q(2− n+ q)− 4

n
(q − q)2

)
1

〈12〉q〈21〉q
, (3.39)

9Superconformal Casimir operators were constructed in [47]. Together with other invariant differential

operators, they were used to classify positive energy unitary irreducible representations of the superconfor-

mal group in [48]. For more recent development, see [49].
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where the superscript on C
(1)
n indicates that the differential operator should act only on

Z1, Z1. Setting n = 4, corresponding to N = 0, the quantity in parentheses becomes

(q + q)(q + q − 4), which is the correct Casimir eigenvalue for an operator of dimension

q + q in a four-dimensional CFT. Setting n = 3, corresponding to N = 1, we recover c0,0
q,q

in (3.35).

Now let us consider a four-point function of chiral and anti-chiral operators

〈φ(X1)φ∗(X2)φ(X3)φ∗(X4)〉. (3.40)

The only superconformal four-point invariants that can be built out of X1, X2, X3, X4 are

〈1234〉
〈14〉〈32〉

≡ −1 + u+ v

4v

〈12〉〈34〉
〈14〉〈32〉

≡ u

v
, (3.41)

where we have defined them in such a way that they reduce to the usual conformal cross-

ratios when all the θi, θi are set to zero.

Acting with the Casimir C
(1,2)
n on the ansatz

〈φ(X1)φ∗(X2)φ(X3)φ∗(X4)〉 =
1

〈12〉∆φ〈34〉∆φ
G(u, v), (3.42)

we obtain the equation

DG(u, v) = λG(u, v) (3.43)

D ≡ ((1− v)2 − u(1 + v))∂vv∂v + (1− u+ v)u∂uu∂u − 2(1 + u− v)uv∂v∂u

−nu∂u + 2(n− 4)((u− v)u∂u + (1 + u− v)v∂v). (3.44)

where λ is the Casimir eigenvalue for the exchanged operator. This equation is closely

related to the Casimir equation for a conformal block for scalars φi with nonzero ∆ij ≡
∆i −∆j in a 4d CFT [58]. By relating the differential operators present in the two cases,

one can show that (3.43) is solved by

GN (u, v) = u−N/2g∆12=∆34=N
∆+N ,` (u, v), (3.45)

where

g∆12,∆34

∆,` (u, v) = (−1)`
zz

z − z
(k∆+`(z)k∆−`−2(z)− (z ↔ z)), (3.46)

kβ(x) = xβ/22F1

(
β −∆12

2
,
β + ∆34

2
, β, x

)
, (3.47)

u = zz, v = (1− z)(1− z), (3.48)

is the usual 4d conformal block.

Let us make a few comments about this result. When N = 1, eq. (3.45) provides a

new compact expression for the chiral-antichiral block originally derived in [5]. Although

it is not obvious from the above expression, GN=1 can be decomposed into a finite sum of

N = 0 blocks with ∆12 = ∆34 = 0, as required by the conformal symmetry.
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Although our main focus in this paper has been on N = 1 theories, the expression

eq. (3.45) also has meaning when N = 2. While in general one needs more complicated

superspaces to describe CFTs with extended supersymmetry, the superspace defined in

section 2 suffices to describe operators which are annihilated by all supersymmetries of

one chirality.10 Scalar operators of this type live in so-called Er(0,0) multiplets [59], and

their VEVs parameterize the Coulomb branch of the theory. In theories with Lagrangian

descriptions, examples include Tr(φk), where φ is the adjoint scalar in a N = 2 vector

multiplet. Eq. (3.45) with N = 2 gives the superconformal block for a four point function

of such operators and their conjugates.

When N = 4, the constraint that a scalar be invariant under all supersymmetries of

one chirality is overly restrictive, and satisfied only by the identity.

4 Supershadow approach

In theories whose dynamics respect a symmetry, it is usually fruitful to be able to project

transition amplitudes or correlators onto irreducible representations of that symmetry. The

shadow operator formalism of Ferrara, Gatto, Grillo, and Parisi [27–30] was invented to

simplify this projection in conformal field theories. The first observation of this approach

is that operators can have non-vanishing two-point function only if they are in represen-

tations with the same conformal Casimir, which in terms of the dimension ∆ and Lorentz

representation (j, j) of the primary operator is

Cj,j∆ = ∆(∆− 4) + Cj,j , (4.1)

in d = 4. Here, Cj,j = 1
2j(j + 2) + 1

2j(j + 2) is the Casimir of the Lorentz group. For a

given Cj,j∆ and Cj,j , there are therefore two different possible primary operator dimensions

in the same selection sector, related by ∆ ↔ 4 − ∆. The representation with primary

dimension 4 −∆ is referred to as the shadow representation of the primary dimension ∆

representation, and the primary operator with dimension 4 − ∆ is the shadow operator.

Since both the operator O and the shadow operator Õ sit in the same selection sector,

either may be used to project onto irreps of O, but there are certain advantages to using

the shadow operator. Primary among these are that the product
∫
d4xO(x)Õ(x) has zero

projective weight. In an appropriately regulated sense, 〈O(x)Õ(y)〉 ∝ δ(4)(x − y), so the

shadow operator not only projects onto the irrep of O, but it also strips out unwanted two-

point functions that would arise if we used O instead. This fact was used in [27] in order

to provide an efficient means of computing the OPE coefficients of descendant operators

in terms of those of the primary operators. The shadow operators are non-local operators;

for j = j = 0 they are

Õ(x) =

∫
d4y

1

(x− y)2(4−∆)
O(y). (4.2)

This manifestly transforms like a primary operator under translations, and by acting with

a conformal inversion on O(y) and changing integration variables, it is not too hard to

10We thank Leonardo Rastelli and Chris Beem for discussions on this point.
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see that Õ transforms like a primary operator of dimension 4−∆ under inversions. Con-

sequently, it transforms like a primary operator of dimension 4 − ∆ under all conformal

transformations. The two-point function 〈O(x)Õ(y)〉 can easily be regulated and computed

by Fourier transforming.

A similar construction is possible and useful in superconformal theories. For N = 1,

the superconformal Casimir is

Cj,jq,q = (q + q)(q + q − 2)− 1

3
(q − q)2 + Cj,j . (4.3)

Thus, in order to satisfy the constraints of R-symmetry on the two-point function and

have the same superconformal Casimir, the shadow operator must have q̃ − q̃ = q − q and

q̃ + q̃ = 2 − q − q, respectively, so q̃ = 1 − q, q̃ = 1 − q. This is correct dimensionfully for

the product
∫
d4xd4θO(x, θ, θ)Õ(x, θ, θ) to have zero projective weight. One can construct

the shadow operators explicitly as before by using the supersymmetric measure; for L = 0,

now they are11

Õ(x, θ, θ) =

∫
d4yd4η

1

(x− − y+ + 4iθη)2(1−q)(y− − x+ + 4iηθ)2(1−q)O
†(y, η, η). (4.4)

This can be checked by taking a conformal inversion and seeing that Õ transforms

the correct way. This follows relatively straightforwardly once one has the transformations

under conformal inversions R for O, the coordinates, and the integration measure, as we

discuss in section 4.1.2.

One again sees that this is explicitly a non-local operator. Consequently, when this is

used in conjunction with the OPE, one in general has to be careful about the presence of

singularities that may arise when the region of integration brings O(y) inside the minimal

ball surrounding the operators whose OPE is being taken [31]. Writing the explicit inte-

grals constructing the shadow operators becomes more involved in standard superspace for

operators of higher spin, and it is convenient to pass instead to the super-embedding space.

In section 4.4, we will use the shadow operator formalism together with twistor space to

write down integrals that compute the superconformal blocks.

4.1 Superconformal integration

A crucial tool in the shadow formalism is a notion of conformally invariant integration [31].

Similarly, here we will need a notion of superconformally invariant integration. The final

answer is simply
∫
d4xd4N θ with some restrictions on the integrand. We will arrive at

it in two ways: firstly using our realization of superspace in terms of supertwistors, and

secondly by a more conventional superspace computation.

4.1.1 Manifestly covariant derivation

Recall that superspace is given by supertwistors ZaA, Z
ȧA

subject to the condition Z
ȧA
ZaA =

0 with a GL(2,C)×GL(2,C) gauge redundancy (2.9). The obvious measure∏
a=1,2

d4|NZa
∏
ȧ=1,2

d4|NZ
ȧ

(4.5)

11See [51] for details of the conventions adopted here.
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is invariant under SL(4|N ), since each term d4|NZ transforms with a superdeterminant

sdet(M) under a transformation Z →MZ.

To integrate over superspace itself, we should include the four constraints Z
ȧA
ZaA = 0

with a four-dimensional delta function,

ω ≡
∏
a=1,2

d4|NZa
∏
ȧ=1,2

d4|NZ
ȧ
δ4(Z · Z). (4.6)

Finally, while superconformally invariant, this expression transforms nontrivially under the

gauge redundancies (2.9),

ω → (det g)2−N (det g)2−Nω. (4.7)

Thus, it is only well-defined to integrate ω against a function that transforms oppositely

under GL(2,C)×GL(2,C):

f(Zg, gZ) = (det g)N−2(det g)N−2f(Z,Z). (4.8)

For a function f satisfying (4.8), we may define the superconformal integral∫
D[Z,Z]f(Z,Z) ≡ 1

vol(GL(2,C)×GL(2,C))

∫
ωf(Z,Z). (4.9)

The integral is gauge-invariant, so it is defined via the Faddeev-Popov procedure.

Passing from the formal definition (4.9) to a more conventional expression is straight-

forward. We gauge-fix by choosing Z and Z to lie on the Poincare slice (2.5) and its dual.

The Faddeev-Popov determinant is trivial, and the argument of the delta function is given

by (2.8), so that we have (up to overall constants which we discard)∫
D[Z,Z]f(Z,Z) =

∫
d4x+ d

4x− d
4N θ δ4(x+ − x− − 4iθ

i
θi)f(Z,Z)|Poincare slice (4.10)

=

∫
d4x d4N θ f(Z,Z)|Poincare slice. (4.11)

We stress that the integral in this simple form is only conformally invariant if f(Z,Z)

satisfies the correct homogeneity condition (4.8).

4.1.2 Conventional derivation

We can also understand the appropriate superconformally invariant integral in more con-

ventional N = 1 superfield notation. The integration measure
∫
d4xd4θ is manifestly

invariant under translations in superspace, and transforms very simply under dilatations,

so the only non-trivial transformation to check is that of conformal inversions. In general,

under a change of variables, the integration measure transforms according to∫
d4xd4θ =

∫
d4yd4ηBer−1, (4.12)

where Ber is the Berezinian for the transformation:

Ber = sdet

(
∂(y, η)

∂(x, θ)

)
. (4.13)
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Since we are interested in conformal inversions, the change in coordinates is

yα̇α =
xα̇α

x2
, yα̇α± =

xα̇α∓
x2
∓
, ηα̇ = −i(x−1

+ )α̇αθα, ηα = iθα̇(x−1
− )α̇α. (4.14)

The computation of Ber for this coordinate change is straightforward but quite long and

tedious; the result is

Ber ∝ y2
+y

2
−. (4.15)

Consequently, under a conformal inversion, the coordinates, fields, and integration measure

transform according to

x̃12
R→ x−1

1+x12x
−1
2−, (4.16)

O(y, η, η)
R→ (y′−)2q(y′+)2qO(y′, η′, η′), (4.17)∫

d4yd4η =

∫
d4y′d4η′

(y′+)2(y′−)2
. (4.18)

The shadow field operator is constructed in terms of the original operator O through the

integral

Õ(x1, θ1, θ1) =

∫
d4x2d

4θ2
1

(x12)2(1−q)(x21)2(1−q)O(x2, θ2, θ2). (4.19)

We can take RÕR by acting on the left and right with R on the right-hand side above.

Crucially, all factors of (x′2+)2 and (x′2−)2 from the transformation of the operator cancels

inside the integrand against the change of the measure and the change of the denominators,

to obtain

Õ R→ (x′1+)2(1−q)(x′1−)2(1−q)
∫
d4x′2d

4θ′2
1

(x′
12

)2(1−q)(x′
21

)2(1−q)O(x′2, θ
′
2, θ
′
2), (4.20)

exactly as necessary for Õ to transform like a superconformal primary operator with q̃ =

1− q, q̃ = 1− q.

4.2 Bitwistors, shadows, and projectors

Working in superembedding space, we can use bitwistors X,Y and the index-free formalism

of section 2.3 to define shadow operators and partial-wave projectors in a manifestly-

covariant way. For O(X,X, S, S) ∼
(
j
2 ,

j
2 , q, q

)
, its shadow is given by

Õ(X,X, S, S) ≡
∫
D[Y, Y ]

1

〈XY 〉2−N−q+
j
2 〈XY 〉2−N−q+

j
2

O(Y, Y S, Y S), (4.21)

where D[Y, Y ], shorthand for D[ZY , ZY ], is the superconformal measure from eq. (4.9) and

O ∼ ( j2 ,
j
2) is the Lorentz-conjugate of O. Overall, Õ ∼ ( j2 ,

j
2 , 2−N − q, 2−N − q) as was

noted earlier. Eq. (4.21) is simply the generalization of eq. (4.4) to arbitrary spin, lifted to

superembedding space.

– 18 –



J
H
E
P
0
8
(
2
0
1
4
)
1
2
9

Given a correlation function, the dimensionless projector onto the superconformal mul-

tiplet of O is12

|O| = 1

j!2j!2

∫
D[X,X]|O(X,X, S, S)〉

(←−
∂SX
−→
∂T

)j (←−
∂SX
−→
∂T

)j
〈Õ(X,X, T, T )|

∣∣∣∣
M

(4.22)

In particular, for a four-point function 〈Φ1Φ2Φ3Φ4〉 the superconformal partial wave WO
corresponding to O-exchange in the (12) (34)-channel is given (up to some normaliza-

tion) by

WO ∝ 〈Φ1Φ2 |O|Φ3Φ4〉|M . (4.23)

In the equations above, |M schematically denotes a “monodromy projection” [31].

Such a projection should restrict the integral in eq. (4.22) to only those X compatible with

the OPE of the fields Φi appearing in a given correlator. For instance, in eq. (4.23), the

monodromy projection should restrict the integration away from X1,2 and X3,4 so that the

Φ1×Φ2 and Φ3×Φ4 OPEs remain valid. Without it, one would have additional “shadow”

partial-wave contributions appearing on the left-hand side of eq. (4.23). In what follows, we

will not need to formulate a supersymmetric definition of monodromy projection, because

we will only encounter projections of (non-SUSY) conformal integrals, which have been

worked out previously [31, 60]. The result is in eq. (4.55).

From eqs. (4.22), (4.23) we see that in the shadow formalism, the computation of

superconformal partial waves boils down to evaluating integrals of the form

WO ∼
∫
D[X,X]f(X,X)

∣∣∣∣
M

(4.24)

where f(X,X) is essentially a product of a three-point function 〈Φ1Φ2O〉 and a shadow

three-point function 〈ÕΦ3Φ4〉. Here, we will not attempt to evaluate these integrals in

full generality. Rather, we will focus our attention on the case where the superfields Φi

in the four-point function, which we refer to as the “external” fields, are restricted to

their lowest component field. The exchanged operator O remains a full-fledged superfield,

so this restricted scenario is still motivated by supersymmetric bootstrap applications.

Operationally, setting all Φi to their lowest component is achieved by simply setting their

fermionic superspace coordinates θi, θi to zero. In the next section, we will show how

setting these external thetas to zero in eq. (4.24) can be handled in a manner that preserves

manifest (non-SUSY) conformal invariance, reducing the integral in eq. (4.24) to (a possible

sum over) known monodromy-projected bosonic conformal integrals.

4.3 Conformally covariant evaluation of superconformal integrals

As explained above, we will be interested in evaluating superconformal integrals with ex-

ternal fermionic coordinates θi, θi set to zero. In this subsection, we explain how such

integrals reduce to non-SUSY conformal integrals of the type discussed in [31]. The result

is a compact formula that lets us efficiently evaluate superconformal blocks in terms of

conformal blocks.

12This is the straightforward SUSY generalization of the bosonic embedding-space projector in [31].
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In our discussion, we will need to distinguish between supertwistors and their bosonic

twistor components. For clarity, it will be helpful to modify our notation slightly from

that used in previous sections. Henceforth, we use caligraphic letters ZaA,XAB to denote

supertwistors and objects built from them, while reserving roman letters Zaσ , Xσρ for re-

striction to the (bosonic) twistor part, σ, ρ = α, α̇. Throughout our computations, we will

use the equivalence between antisymmetric bitwistors Xσρ and vectors in the embedding

space X ∈ C6.

Consider a superconformal integral

I =

∫
D[Z,Z]g(X ,X ), (4.25)

where XAB,X
AB

are bi-supertwistors built from Z,Z according to (2.10), and g is a func-

tion of weight N − 2 in both X and X . We can imagine that g is built from external

bi-supertwistors Xi,X i together with the integration variables X ,X .

Let us define the fermionic components

ηaI ≡ ZaI , ηȧI ≡ Z ȧI . (4.26)

Where I = 1 . . .N labels the fermionic coordinates of supertwistor space. We will be

interested in integrals with the property that when all external Grassmann numbers are

set to zero, g is independent of η, η. The only dependence of the integrand on η, η is then

through the delta function in the measure, so we can immediately integrate over fermionic

variables

I =
1

vol(GL2)2

∫
d8Z d8Zd2N η d2N η δ4(Z

ȧσ
Zaσ + ηȧIηaI )g(X,X) (4.27)

∝ 1

vol(GL2)2

∫
d8Z d8Z

((
εabεȧḃ∂aȧ∂bḃ

)N
δ4(Z · Z)

)
g(X,X). (4.28)

Consider now just the integral over Z,

Jh ≡
1

vol(GL2)

∫
d8Z

((
εabεȧḃ∂aȧ∂bḃ

)N
δ4(Z · Z)

)
h(X), (4.29)

where h(X) ≡ g(X,X) and for the moment we are pretending that Z and X are constant.

Note that as in eq. (4.8), h is homogeneous of degree N − 2. To proceed, it suffices to

compute the above integral on a basis of homogeneous functions of degree N − 2. As we

show in appendix A, we can always write h in the form

h(X) =
∑
P

Γ(2−N )(
P ·X

)2−N (4.30)

where P,X ∈ C6 are vectors in the embedding space, and the sum over P could be an

integral with various weights. In the case N = 2, one should make sense of this via the

replacement13

Γ(2−N )

(P ·X)2−N → log(P ·X). (4.31)

13Although log(P ·X) transforms via a constant shift under rescalings of X, this constant ambiguity will

always cancel after taking linear combinations
∑
P , so that h(X) is invariant under rescalings, as required.
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Thus, let us temporarily replace h(X) with the basis function Γ(2−N )(P ·X)N−2 for

some P ∈ C6. The answer for the integral is then fixed up to a constant by demanding that

it has SO(4, 2) invariance, the correct homogeneity in P , and also transform appropriately

under the GL2 redundancy acting on Z,

1

vol(GL2)

∫
d8Z

(
εabεȧḃ∂aȧ∂bḃ

)N
δ4(Z · Z)

Γ(2−N )(
P ·X

)2−N ∝ P 2N

(P ·X)2+N

∝ ∂2N
X

1(
P ·X

)2−N
∣∣∣∣∣
X=X

. (4.32)

By linearity, we find

Jh ∝ ∂2N
X
h(X)

∣∣
X=X

. (4.33)

Substituting this result into (4.28), we get

I ∝ 1

vol(GL2)

∫
d8Z ∂2N

X
g(X,X)

∣∣
X=X

. (4.34)

An integral of this type over a pair of twistors Za is equivalent to an integral over the

projective null cone in the embedding space

I ∝
∫
D4X ∂2N

X
g(X,X)

∣∣
X=X

, (4.35)

where ∫
D4Xf(X) ≡ 1

vol(GL1)

∫
d6Xδ(X2)f(X) (4.36)

is the conformally invariant integral defined in [31]. A simple way to establish the equiva-

lence between these two types of integrals is to show that they agree on a basis of functions

with the appropriate homogeneity in X, for instance

1

vol(GL2)

∫
d8Z

1

(P ·X)4
=

∫
D4X

1

(P ·X)4
∝ (P 2)−2 (4.37)

where P ∈ C6 is an embedding space vector. The Z-integral above is evaluated in [61], while

the X-integral is evaluated in [31]. They both equal (P 2)−2 (up to numerical constants

which can be absorbed into the definition of the integration measure), which is the only

possibility consistent with conformal invariance and homogeneity.

To summarize, we have derived∫
D[Z,Z]g(X ,X )

∣∣∣∣
θi,θi=0

=

∫
D4X ∂2N

X
g(X,X)

∣∣
X=X

. (4.38)

Let us conclude with a brief comment about the meaning of the integrand on the right-

hand side. Since the embedding space vector X is constrained to be null, the operator

∂2N
X

näıvely seems ill-defined. (Since the components of X are not independent, we can’t
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differentiate with respect to each individually.) However, it happens to be well-defined in

the special case we’re considering, precisely because g(X,X) is constrained to have degree

N − 2 in X.

To see why, consider a homogeneous function h(X) with degree n in X. As a function

on the null-cone, h(X) is ambiguous up to a shift h(X) ∼ h(X) +X
2
k(X), where k(X) is

any function of degree n− 2. Acting with our differential operator on the ambiguous term,

we find

∂2N
X

(X
2
k(X)) = 4N (n−N + 2)∂2(N−1)k(X) +X

2
∂2N
X
k(X) (4.39)

where we’ve used X ·∂Xk(X) = (n−2)k(X), and ∂2
X
X

2
= 12, which is twice the dimension

of the embedding space. Precisely when n = N − 2, we have

∂2N
X

(X
2
k(X)) = X

2
∂2N
X
k(X) (4.40)

Thus, we can set X
2

= 0 either before or after acting with ∂2N
X

, and the result will be

consistent. In other words, when h(X) is restricted to have degree N −2, the operator ∂2N
X

maps the ideal generated by X
2

to itself, and thus gives a well-defined map on functions

on the null-cone.

4.4 Chiral blocks in four dimensions

As a simple illustration of the shadow approach, we consider the four-point function of

chiral and antichiral superfields in superembedding space,

〈Φ(X1)Φ†(X 2)Φ(X3)Φ†(X 4)〉, (4.41)

where Φ ∼ (0, 0, qΦ, 0) and Φ† ∼ (0, 0, 0, qΦ), and compute superconformal blocks corre-

sponding to the exchange of a real spin-` operator O ∼
(
`
2 ,

`
2 , q, q

)
in the Φ× Φ† channel.

The initial ingredients are the three-point function 〈ΦΦ†O〉, eq. (2.34), and its shadow

〈ÕΦΦ†〉, which can be obtained by simply taking q → 2−N − q in eq. (2.34), i.e.,

〈Õ(X0,X 0, T , T )Φ(X3)Φ†(X 4)〉 ∝ (T 34T )`

〈34〉qΦ−2+N+q+ `
2 〈30〉2−N−q+

`
2 〈04〉2−N−q+

`
2

. (4.42)

We will not need to keep track of overall constants.

The full superconformal partial wave, given by eqs. (4.22), (4.23), is then

WO ∝
1

〈12〉qΦ−q+
`
2 〈34〉qΦ−2+N+q+ `

2

∫
D[0, 5]

N`

D`
, (4.43)

where

N` ≡
1

`!4
(
S12S

)`
(∂S0∂T )`

(
∂S5∂T

)` (T 34T
)`
, (4.44)

D` ≡ 〈15〉q+
`
2 〈02〉q+

`
2 〈35〉2−N−q+

`
2 〈04〉2−N−q+

`
2 , (4.45)
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and we have relabeled X0 → X5 to avoid confusion when taking derivatives below.14 Mon-

odromy projection is understood in all integrals, and we will not write it explicitly.

We now restrict our attention to the lowest component field of Φ and Φ†, setting

θext = 0. This amounts to the replacement Xi → Xi, where Xi is the top-left 4 × 4

submatrix of the bi-supertwistor Xi, along with S → S, T → T , where S and T are the

twistor parts of the supertwistors S, T .15 As in the previous subsection, we will often

think of Xi as a vector in the 6-dimensional embedding space via Xαβ = 1
2XmΓmαβ and

Xαβ = 1
2XmΓ̃mαβ, where Γ, Γ̃ are six-dimensional “sigma”-matrices. After our replacement,

the two-point invariants become 〈ij〉 → −2Xij ≡ 4Xi ·Xj . Our conventions for embedding

space vectors and spinors are those of [31].

We then use eq. (4.38) to obtain:

WO|θext=0 ∝
1

(X12)qΦ−q+
`
2 (X34)qΦ−2+N+q+ `

2

∫
D4X0 ∂

2N
5

N`

D`

∣∣∣∣
5=0

. (4.46)

At this point, our computation boils down to the differentiation in eq. (4.46), which

turns out to be trivial. First, ∂2
5
N` ∝

(
∂SΓm∂T

) (
∂SΓm∂T

)
∝ εαβγδ∂Sα∂Tβ∂Sγ∂Tδ = 0, so

∂2
5
N` = 0. (4.47)

The mixed derivative (∂5N`) ·(∂5D`) contains a term with
(
S12S

) (
∂S1∂T

)
in it and a term

with
(
∂S3∂T

) (
T34T

)
in it, both of which vanish since 11 = 33 = 0, so

(∂5N`) · (∂5D`) = 0. (4.48)

Thus the only non-vanishing derivative is

∂2
5

1

D`
∝ X13

X15X35

1

D`
. (4.49)

The only additional fact [31] we need is that with θext = 0,

N`|5=0 ∝ s
`
2C

(1)
` (t), (4.50)

where C
(λ)
` (t) are Gegenbauer polynomials and

t ≡ −X13X20X40

2
√
s

− (1↔ 2)− (3↔ 4) , (4.51)

s ≡ X10X20X30X40X12X34. (4.52)

Therefore,

∂2N
5

N`

D`

∣∣∣∣
5=0

∝
(

X13

X10X30

)N (X12X34)
`
2 C

(1)
` (t)

(X10X20)q (X30X40)2−N−q . (4.53)

14The numerator N` can be written as a Gegenbauer polynomial, N` = (−1)` s
`
2C

(1)
` (t), where s ≡

1
26 〈15〉〈02〉〈35〉〈04〉〈12〉〈34〉 and t ≡ 〈215340〉

2
√
s

. We will not need to use this fact.
15Note that the superconformal relations XX = 0, SS = 0, etc., do not necessarily imply analogous

relations among the bosonic twistor components XX 6= 0, SS 6= 0.
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Plugging this into eq. (4.46), we get that

WO|θext=0 ∝
(X13)N

(X12)qΦ−q (X34)qΦ−2+N+q

∫
D4X0

C
(1)
` (t)

XN+q
10 Xq

20X
2−q
30 X2−N−q

40

. (4.54)

The integral in eq. (4.54) is a known (monodromy-projected) conformal integral [31]:

∫
D4X0

C1
` (t0)

X
∆+∆12

2
10 X

∆−∆12
2

20 X
∆̃+∆34

2
30 X

∆̃−∆34
2

40

∣∣∣∣∣∣
M

∝
(
X14

X13

)∆34
2
(
X24

X14

)∆12
2

X
−∆

2
12 X

− ∆̃
2

34 g∆i

∆,`(u, v)

(4.55)

where u =
x2

12x
2
34

x2
13x

2
24

= zz and v =
x2

14x
2
23

x2
13x

2
24

= (1− z)(1− z) are the conformal cross-ratios and

g∆i
∆,`(u, v) are the usual non-SUSY conformal blocks given in eq. (3.46).

Using eq. (4.55) to evaluate eq. (4.54) and dropping the overall constant, our result for

the partial wave is

WO|θext=0 =
1

(X12)qΦ (X34)qΦ
u−

N
2 g∆12=∆34=N

2q+N ,` (u, v). (4.56)

Peeling off the prefactor 1
(X12)qΦ (X34)qΦ

yields the superconformal block for O-exchange,

G∆,`|θext=0 = u−
N
2 g∆12=∆34=N

∆+N ,` (u, v), (4.57)

where ∆ = ∆O = 2q. This agrees with our super-Casimir computation, eq. (3.45).

It is worth emphasizing that the only calculation involved here were the trivial deriva-

tives in eqs. (4.47)–(4.49). After performing these embedding-space derivatives, the integral

expression for the partial wave simply reduces to a known conformal integral. This is the

essence of the shadow approach.

5 Discussion

Correlation functions in superconformal field theories can be decomposed into partial waves

that transform in irreducible representations of the superconformal group. The supercon-

formal bootstrap program uses these partial waves as atomic ingredients in the bootstrap

equation. The exploration of the SCFT bootstrap is limited by our knowledge of these

partial waves in a suitably explicit form.

In this paper we have presented two formalisms for computing the superconformal

partial waves, each generalizing techniques for the computation of conformal partial waves.

In the superconformal Casimir approach, we used the fact that conformal partial waves

are eigenfunctions of the quadratic Casimir operator of the superconformal group with an

eigenvalue determined by the quantum numbers of the representation. This approach can

be applied in any number of spacetime dimensions, and we gave examples in both d = 2

and d = 4. In the case of chiral and anti-chiral operators, we were able to show that the

superconformal blocks can be arranged into a new form equivalent to conformal blocks with

quantum numbers shifted by N . In particular, we present new results for superconformal
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blocks of Er(0,0) multiplets (and their conjugates) in N = 2 theories. These expressions are

immediately applicable to the N = 2 superconformal bootstrap.

However, the super-Casimir approach seems to be of limited utility in the general case

due to the proliferation of nilpotent superconformal invariants. It becomes difficult to solve

a differential equation for a function of a large number of independent variables.

Our other approach generalizes the shadow formalism [27–31] to the superconformal

case. We specialized to d = 4 in order to write the superembedding space coordinates in

terms of supertwistors, which transform naturally under the SU(2, 2|N ) group. This made

it possible to write a manifestly invariant projector onto an irreducible representation of

the superconformal group using supershadow operators. The superconformal partial waves

were then written as manifestly invariant supertwistor integrals. In this paper we evaluated

a few simple examples involving chiral and anti-chiral primaries. In a follow-up work [32]

some of us will use these methods to derive N = 1 superconformal blocks for real scalar

operators (including the interesting case of conserved currents [26]). These blocks will be

essential ingredients for further bootstrap investigations.

One future direction is to generalize the supershadow approach to incorporate more

complicated superspaces describing other N > 1 multiplets. In particular the harmonic

superspace for N = 2 would be an interesting starting point.
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A A basis for homogeneous functions

Consider a homogeneous function h(X) of degree −d in a vector X. We claim that h can

be written as a linear combination of functions of the form (P ·X)−d. For the purposes of

this work, it suffices to consider products

h(X) =
∏
i

(Ai ·X)−ai , (A.1)

where
∑

i ai = d. Feynman parameters don’t work if any of the ai are negative. To address

this, choose integers ki such that ai + ki > 0. We may now safely write

h(X) =
∏
i

(Ai ·X)ki

(Ai ·X)ai+ki

=
(−1)

∑
i ki∏

i Γ(ai + ki)

∫
δ(1−

∑
i

ti)
∏
i

dti
ti
tai+kii ∂kiti

Γ(d)

(P (ti) ·X)d
. (A.2)

– 25 –



J
H
E
P
0
8
(
2
0
1
4
)
1
2
9

where P (ti) ≡
∑

i tiAi. When d = 0, we can replace

Γ(d)

(P (ti) ·X)d
→ log(P (ti) ·X) (A.3)

and eq. (A.2) remains true.
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