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1 Introduction

The fact that our present universe has a large proportion of its energy density contained in a

mysterious, non-luminous and non-baryonic form of matter, popularly known as dark mat-

ter (DM), has been very well established by now. Amongst notable evidences suggesting

this, the galaxy cluster observations made by Fritz Zwicky [1] in 1933, observations of galaxy

rotation curves in 1970’s by Rubin and collaborators [2], the observation of the bullet cluster

by Chandra observatory [3] and the measurements of cosmic microwave background (CMB)

by several cosmology experiments, the latest of which is the Planck experiment [4]. In terms

of density parameter ΩDM and h = Hubble Parameter/(100 km s−1Mpc−1), the present

DM abundance is conventionally reported as [4]: ΩDMh
2 = 0.120±0.001 ghosh1992 at 68%

CL. This corresponds to around 26% of the present universe’s energy density, filled up by

DM. While all such evidences are purely based on gravitational interactions of DM, there ex-

ists motivations to expect that DM could have some other forms of weak interactions as well.

Interestingly, if DM interactions with the standard model (SM) particles are similar to those

of electroweak interactions, and particle DM’s mass also remain around the electroweak

scale, such a DM can be thermally produced in the early universe, followed by its freeze-out,

leaving a thermal relic very close to the observed DM abundance. This remarkable coinci-

dence is often referred to as the weakly interacting massive particle (WIMP) miracle [5].

Similarly, the origin of light neutrino masses and mixing have also been a mystery in

the last few decades. While experimental evidence confirms the neutrino mass squared dif-

ferences to be several order of magnitudes below the electroweak scale, their large mixing,

in sharp contrast with the well known quark sector, leads to another puzzle [6]. Due to the

absence of the right handed neutrino, the SM can not accommodate light neutrino masses

due to absence of neutrino-Higgs coupling at the renormalisable level. One can however,

introduce non-renormalisable Weinberg operator [7] (LLHH)/Λ, L ≡ lepton doublet, Λ ≡
unknown cut-off scale, at dimension five level, to account for tiny neutrino masses. Dy-

namical realisation of this operator leads to beyond standard model (BSM) scenarios [8–10]

where introduction of heavy singlet neutrinos take part in generating light neutrino masses

through type I seesaw mechanism.

Motivated by these two problems in the SM, we consider a popular DM scenario

based on vector-like fermions along with an extended gauge symmetry. This extra gauge

symmetry, on top of stabilizing the DM, also plays a role in generating light neutrino masses

and provides additional incentive of enhanced detection aspects. The DM is an admixture

of a vector like singlet fermion and neutral component of a vector like SU(2)L doublet

fermion, popularly known as singlet-doublet fermion DM [11–23]. While such singlet-

doublet fermion extension of the SM can also have some other motivations like, for example,

electroweak baryogenesis, leading to the observed baryon asymmetry of the universe [24], we

confine ourselves to the discussion of DM and its relevant phenomenology. Typically, vector

like fermion (VLF) DM in such scenarios are stabilised by an additional Z2 symmetry under

which the DM is odd while all the SM particles are even. A purely singlet VLF DM does not

have any renormalizable portal interaction with the SM to generate correct thermal relic

abundance. The purely doublet VLF, on the other hand, by virtue of its electroweak gauge
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interactions, annihilates a lot to SM particles, thus reducing its thermal relic abundance

unless its mass is beyond a TeV. A purely doublet VLF also faces stringent constraints from

DM direct detection experiments like LUX [25], PandaX-II [26, 27] and XENON1T [28, 29]

because of large DM-nucleon scattering mediated by electroweak gauge bosons. Even

an admixture of a vector-like singlet and a doublet fermion faces tight constraints from

direct detection experiments. In order to overcome that, a small Majorana mass term

is introduced to split the vector-like mass eigenstates into two pseudo-Dirac ones. This

splitting results in inelastic Z boson coupling to DM which can be prevented kinematically.

The admixture of a singlet and a doublet fermion, therefore, remains as an interesting

scenario as it can circumvent both of these problems (namely, under/over-abundant relic

and too large direct detection cross section of pure singlet/doublet DM), thus allowing

the possibility of sub-TeV DM. We embed the singlet-doublet fermion DM within a gauge

symmetry based on the U(1)B−3Lτ gauge charge. While gauged B−L symmetric extension

of the SM [30–33] has been one of the most widely studied and well motivated BSM

frameworks, we restrict it to the third lepton family only in order to evade strong bounds on

the B−L gauge boson from the Large Hadron Collider (LHC) as well as flavour physics [34–

45]. In addition, such family non-universal neutral gauge boson is also motivating from

flavour anomalies point of view. Several proposals have appeared in the literature in order

to accommodate the reported anomalies in B-meson systems by incorporating additional

flavoured gauge bosons (see, for example [46–52]). The possibility of a TeV scale neutral

gauge boson enhances the production cross section of different components of the vector-like

fermions in comparison to the usual singlet-doublet fermion DM models. Since such neutral

gauge bosons also mediate DM annihilations, henc they also affect DM parameter space

compared to the scenarios with universal B − L gauge bosons.1 Also, the requirement of

anomaly cancellation in this model introduces a heavy singlet right handed neutrino (RHN)

which, along with one or two more right handed neutrinos having vanishing B−3Lτ charges,

can take part in generating light neutrino masses through usual type I seesaw mechanism.

Such right handed neutrino, charged under the additional gauge symmetry, can be produced

resonantly in colliders and can lead to exotic signatures like displaced vertex, if sufficiently

long lived [54]. Apart from offering a potential DM candidate, generating light neutrino

mass, and providing tantalizing collider signatures, the model also attempts to give a

solution to the metastable nature of electroweak vacuum [55–62]. The negative fermionic

contribution (primarily due to top quark and VLFs) to the renormalisation group (RG)

running of the Higgs quartic coupling is compensated by respective contributions from

additional scalars in the model.2 In particular, the constraints from the requirement of

vacuum stability restricts the gauge coupling of TeV scale B − 3Lτ gauge symmetry to

gB−3Lτ . 0.25 and SM Higgs coupling with VLF to Y . 0.3. For such couplings the model

also remains perturbative all the way upto the Planck scale. A recent attempt to constrain

a similar Abelian gauge model with inverse seesaw origin of light neutrino mass from DM

and vacuum stability criteria has appeared in [64].

1A recent summary of such Z′ mediated DM scenarios can be found in [53].
2With VLF alone, it is possible to make the electroweak vacuum stable, if they have coloured charges,

as shown in [63].
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This paper is organised as follows: in section 2 we have introduced the new particles in

our model and their interaction Lagrangian. In section 3 we have discussed the constraints

on the model parameters arising from stability, unitarity and perturbativity of the scalar

potential, electroweak precision observables, LHC searches and generation of light neutrino

mass requirements. The details of the parameter space scan for the DM phenomenology is

elaborated in section 4 where in subsection 4.1 we have illustrated the relic density allowed

parameter space and in subsection 4.2 direct search is discussed. The high scale validity

and perturbativity of the model is elaborated in section 5, where we have also chosen some

of the benchmark points satisfying all relevant constraints in order to perform the collider

analysis. The collider signatures of the model, along with discovery potential in the LHC is

thoroughly explained in section 6. Finally in section 7 we have concluded and summarised

our findings.

2 The model: fields and interactions

We first tabulate all the particles of the model in table 1 with their corresponding gauge

charges. On top of the familiar SM particles we have a few additional particles. In the

fermion sector, there are three right handed neutrinos (RHN): NR of which NR1,2 have zero

B − 3Lτ charges and NR3 has non-zero charge under U(1)B−3Lτ . Apart from cancelling

the triangle anomalies arising due to the U(1)B−3Lτ symmetry (shown below) these right

handed neutrinos help us to generate light neutrino masses via type I seesaw mechanism as

we shall discuss in detail. We also have one VLF doublet ψT :
(
ψ0 ψ−

)
and one VLF singlet

χ. The lightest physical state that arises from the mixing of these two will serve as the DM,

while the charged components can be produced at the collider to give interesting signatures.

In the scalar sector, apart from the SM Higgs doublet H we have two more singlet scalars:

S and Φ both charged under U(1)B−3Lτ . The additional SM singlet scalar fields take

part in spontaneous symmetry breaking (SSB) of U(1)B−3Lτ , thus giving mass to the new

heavy charge neutral gauge boson. While one such scalar is sufficient for spontaneous gauge

symmetry breaking, we need both of them in the set up for phenomenological reasons. One

of the scalars helps in providing the required texture of RH neutrino mass matrix through

its non zero vev after spontaneous breaking of U(1)B−3Lτ . The other scalar splits the Dirac

VLFs into pseudo-Dirac states, required to avoid stringent direct detection bounds, as we

shall explicitly show while discussing the DM phenomenology.

The condition for anomaly cancellation comes from the triangle diagrams with gauge

bosons at the vertices: ∑
LH

Tr
[
T a{T b, T c}

]
−
∑
RH

Tr
[
T a{T b, T c}

]
, (2.1)

with “Tr” standing for trace and T a,b,c denoting the corresponding generators. This van-

ishes exactly as the VLFs contribute identically to the left and right-handed representation.

However, the contributions from other fermions do not vanish in general due to their chiral

nature. Demanding cancellation of gauge and gravitational anomalies we end up with the
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Particles SU(3)c SU(2) U(1)Y U(1)B−3Lτ

qiL 3 2 1/6 1/3

uiR 3 1 2/3 1/3

diR 3 1 -1/3 1/3

l1,2L 1 2 -1/2 0

l3L 1 2 -1/2 -3

e1,2R 1 1 -1 0

e3R 1 1 -1 -3

H 1 2 -1/2 0

S 1 1 0 3

Φ 1 1 0 -3/2

NR1,2 1 1 0 0

NR3 1 1 0 -3

χ 1 1 0 3/4

ψT :
(
ψ0, ψ−

)
1 2 -1/2 3/4

Table 1. Relevant particle content of the model and their charges under SM ×U(1)B−3Lτ .

following non-trivial relations:

gravity gauge =⇒ 9(−xd + 2xq − xu) + (−xeR + 2x` − xNR3
) = 0

U(1)3
B−3Lτ =⇒ 9

(
−x3

d + 2x3
q − x3

u

)
+
(
−x3

eR
+ 2x3

` − x3
NR3

)
= 0

U(1)2
B−3LτU(1)Y =⇒ 9

(
−1

3
(−1)x2

d +
2x2

q

6
− 2x2

u

3

)
+
(
(−1)x2

` − (−1)x2
eR

)
= 0

U(1)2
Y U(1)B−3Lτ =⇒ 9

((
−1

3

)2

(−xd) + 2

(
1

6

)2

xq −
(

2

3

)2

xu

)

+

(
2

(
−1

2

)2

x` − (−1)2xeR

)
= 0,

(2.2)

where xi stands for the U(1)B−3Lτ charges for all the particles appearing in table 1. The

other anomalies, namely SU(2)2U(1)B−3Lτ , SU(3)2
cU(1)B−3Lτ are trivially cancelled. The

U(1)B−3Lτ charges of the relevant fermions are assigned in table 1 from which it is easy

to check that all the anomalies are cancelled by taking all three fermion generations into

account. This is a typical feature of non-universal gauge symmetry where anomalies are not

cancelled generation wise, but they vanish only for all three generations combined. The

U(1)B−3Lτ charges of the scalar fields and vector fermions will be dictated through the

interaction terms in the Lagrangian as we explain in the following paragraphs. It is worth

mentioning that the minimal B−L gauge symmetric model [30–33] is anomaly free if three

right handed neutrinos having B−L charge −1 each are taken into account. However, this is
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not the only solution to anomaly cancellation conditions. There exist exotic charges of ad-

ditional chiral fermions that can give rise to vanishing triangle anomalies [65–69]. Similarly,

the anomaly cancellation solution mentioned here for our model is not the only possible

one, there exists non-minimal solutions for the same which we do not discuss in our work.

With this particle content at our disposal, now we can proceed to write the Lagrangian

for this model. The Lagrangian contains four more parts on top of the SM Lagrangian:

L = LSM + Lgauge + Lf + Lscalar + Lyuk. (2.3)

The gauge part of the Lagrangian is written as:

Lgauge = −1

4
B
′
µνB

′µν + εBµνB
′µν , (2.4)

with

B
′
µν = ∂µ

(
Z
′
B−3Lτ

)
ν
− ∂ν

(
Z
′
B−3Lτ

)
µ
. (2.5)

The first term in eq. (2.4) is the kinetic term for the new U(1)B−3Lτ gauge boson and the

second term arises due to kinetic mixing between U(1)Y and U(1)B−3Lτ gauge bosons. For

simplicity we choose ε = 0 at the scale of B − 3Lτ symmetry breaking as in [70]. The

Lagrangian for the new fermion sector (excluding their couplings to the SM Higgs) reads:

Lf = ψ /Dψ + χ /Dχ+

3∑
j=1

NRj /DNRj −Mψψψ −Mχχχ−
1

2

∑
i,j=1,2

Mij(NRi)
cNRj

−
∑
i=1,2

1

2
yi3(NR3)cNRiS − yχ(χ)cχΦ + h.c.,

(2.6)

where under SM ⊗U(1)B−3Lτ , the covariant derivative is defined as:

Dµ ≡
(
∂µ − ig2

τa

2
W a
µ − ig1Y Bµ − igB−3LτYB−3LτZ(B−3Lτ )µ

)
. (2.7)

where the second and third terms on the right hand side will be present only for the VLF

doublet while for VLF singlet and RHNs, only the first and the last terms are present.

In the last term on right hand side of eq. (2.7), YB−3Lτ corresponds to B − 3Lτ charge

of the respective fermion. The first two terms in eq. (2.6) are the kinetic terms for the

VLF doublet and VLF singlet respectively. The third term corresponds to the kinetic term

of the RHNs. The mass term for the VLFs is given by the fourth and fifth term. The

Majorana mass terms for the RHNs is given by the sixth and seventh term. The seventh

term decides the B − 3Lτ charge of the scalar singlet S (+3) as N3 must have B − 3Lτ
charge of -3 for the sake of anomaly cancellation. The last term is the Majorana term for

the VLF singlet, which is responsible for the pseudo-Dirac splitting of the VLFs. For the

scalar sector the Lagrangian can be expressed as:

Lscalar = (DµH)† (DµH) + (DµΦ)† (DµΦ) + (DµS)† (DµS)− V (H,Φ,S), (2.8)

– 6 –
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where

DµH =

(
∂µ − ig2

τa

2
W a
µ − ig1Y Bµ

)
H,

DµΦ =
(
∂µ − igB−3LτYB−3LτZ(B−3Lτ )µ

)
Φ,

DµS =
(
∂µ − igB−3LτYB−3LτZ(B−3Lτ )µ

)
S.

With one SM Higgs doublet and two non-standard singlets the renormalisable scalar po-

tential takes the form:

V (H,Φ,S) = µ2
H

(
H†H

)
+ λH

(
H†H

)2
+ µ2

Φ|Φ|2 + λΦ|Φ|4 + µ2
S |S|2

+ λS |S|4 + λ1

(
H†H

)
|Φ|2 + λSΦ|Φ|2|S|2 + λ2

(
H†H

)
|S|2

+ µ (SΦΦ +H.c) .

(2.9)

The last term is important as it provides mass for the pseudoscalar by explicitly breaking

the global symmetry of the potential, in absence of which we would have ended up with one

massless Goldstone boson. Note that, this term also determines the B−3Lτ charge for the

second scalar singlet Φ (-3/2) as the charge for S is already determined from RHN Majorana

mass term in eq. 2.6 as discussed earlier. At the same time, this term also restricts the

choice for the B−3Lτ charge of the VLFs (+3/4), as evident from the last term in eq. (2.6).

Thus, the charge assignment of the new scalars and the VLFs is completely determined by

the desired interaction Lagrangian as well as mass spectrum.

Now, the SM Higgs field and the B − 3Lτ sector scalars are expanded around their

respective vacuum expectation value (VEV):

H =

 G+

h+vd+iz1√
2

 , Φ =
1√
2

(φ+ vΦ + iz2) , S =
1√
2

(s+ vS + iz3) .

The gauged U(1)B−3Lτ is spontaneously broken as the two scalar singlets acquire non-

zero VEV. Then the weak eigenstates of the scalars mix with each other. Thus, in order

to obtain the physical mass eigenstates, we diagonalise the mass matrix as:
h1

h2

h3

 = U (θ12, θ13, θ23)


h

φ

s

 , (2.10)

where U (θ12, θ13, θ23) is usual unitary matrix involving the mixing angles θ12, θ13, θ23 and

complex phase δ = 0. We assume h1 to be SM-like Higgs with a mass of 125 GeV. The

minimisation conditions are given by:

µ2
H =

1

2

(
−2λHv

2
d − λ2v

2
S − λ1v

2
Φ

)
,

µ2
Φ =

1

2

(
−λ1v

2
d − λΦSv

2
S − 3λvSvΦ − 2λφv2

Φ

)
,

µ2
S =

−λ2v
2
dvS − 2λSv

3
S − λΦSvSv

2
Φ − λv3

Φ

2vS
.

(2.11)

– 7 –
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The weak eigenstates (h, φ, s) in terms of the physical eigenstates (h1, h2, h3) and

the mixing angles are given by:

h = h1c12c13 + h2s12c13 + h3s13

φ = c12

(
c23(h2 − h1t12) + s23

(
h3
c13

c12
− s13(h1 + h2t12)

))
,

s = c12c23(h1t12t23 − s13(h1 + h2t12)− h2t23 + h3c12c13 + h3s12t12c13).

where cij = cos θij , sij = sin θij and tij = tan θij with {i, j} = 1, 2, 3 and i 6= j. It is

easy to understand from here, for θ12, θ13 = 0, θ23 6= 0 we revive the SM Higgs purely from

h1. Therefore, θ12 and θ13 are constrained from Higgs data, while θ23 is a free parameter.

After diagonalising, we are left with three CP-even scalars denoted by h1,2,3. We also have

three CP-odd pseudoscalars which, after diagonalising to their physical mass eigenstates,

are referred to as A and G1,2, out of which G1,2 turn out to be the Goldstone modes of

B − 3Lτ , Z gauge bosons giving mG1 = mG2 = 0. Now, h1 is the lightest CP-even Higgs

that has been seen at the LHC, hence mh1 = 125 GeV. Also, the mixing angles θ12 and

θ13 are constrained from Higgs data which we shall elaborate in section 3. Essentially the

scalar sector has the following free parameters:

{mh2,3 ,mA, θ23}. (2.12)

All the quartic couplings appearing in the scalar potential can be expressed in terms

of the physical masses and mixings as follows:

2v2
dλH =m2

h1
c2

12c
2
13 +m2

h2
s2

12c
2
13 +m2

h3
s2

13,

2v2
φλΦ =m2

h1
(c12s13s23 +s12c23)2 +m2

h2
(c12c23−s12s13s23)2 +m2

h3
c2

13s
2
23,

2v2
SλS =m2

h1
s2

12s
2
23 +c2

12

(
m2
h1
s2

13c
2
23 +m2

h2
s2

23

)
−s12c12s13(1−2s2

23)
(
m2
h1
−m2

h2

)
+m2

h2
s2

12s
2
13c

2
23 +m2

h3
c2

13c
2
23−m2

A,

vdvSλ2 = c13

(
s12c12s23

(
m2
h1
−m2

h2

)
+s13c23

(
−m2

h1
c2

12−m2
h2
s2

12 +m2
h3

))
,

vSv
2
φλφS = vφc

2
12s23c23

(
m2
h1
s2

13−m2
h2

)
+vφs12c12s13(2c2

23−1)
(
m2
h1
−m2

h2

)
−m2

h1
vφs

2
12s23c23 +m2

h2
vφs

2
12s

2
13s23c23 +m2

h3
vφc

2
13s23c23 +2m2

AvS ,

µ=−
√

2m2
AvS

v2
φ

.

(2.13)

After SSB we are also left with a new massive charge neutral gauge bosons correspond-

ing to broken U(1)B−3Lτ . The mass of the new gauge boson is given by:

m2
ZB−3Lτ

=
9

4
v2

Φg
2
B−3Lτ

(
1 + 4ṽ2

)
, (2.14)

where ṽ = vS
vΦ

. Eq. (2.14) is important in our analysis as depending on mZB−3Lτ
& 2.4 GeV3

we can constrain our parameter space. Finally, the Lagrangian for the Yukawa sector

3We choose this conservative lower bound in order to be in agreement with relevant experimental con-

straints on flavoured gauge bosons [34–38].
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involving the SM Higgs reads as:

− Lyuk =

2∑
i=1

∑
α=e,µ

yαi LαH̃NRi + yτ3L3H̃NR3 + Y ψH̃χ+ h.c., (2.15)

where the first two terms are the interactions of the SM leptons with the RHNs. Note

that, NR3 can only have interaction with the third generation SM leptons because of the

U(1)B−3Lτ charge assignment. The last term is the mixing of the two VLFs mediated by

SM Higgs. This gives rise to the two physical eigenstates for the VLFs as mentioned below.

2.1 VLF mass eigenstates

The Dirac mass matrix in the basis {χ, ψ0}, containing the singlet and doublet VLF can

be written as:

MV LF =

(
Mχ mD

mD Mψ

)
, (2.16)

where mD = Y vd√
2
�Mχ .Mψ. Thus, the physical eigenstates arise as:

(
ψ1

ψ2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
χ

ψ0

)
, (2.17)

where θ is the mixing angle given by:

tan (2θ) =
2mD

Mχ −Mψ
. (2.18)

The mass for the physical eigenstates are:

Mψ1 'Mχ +mD sin 2θ (2.19)

Mψ2 'Mψ −mD sin 2θ. (2.20)

The lightest physical charge neutral fermion from above is a viable DM candidate in

this model and we choose it to be ψ1 (Mψ1 < Mψ2). The DM is naturally stable due

to our particular choice of the U(1)B−3Lτ charge. In the small mixing limit the charged

component of the VLF doublet ψ± acquires a mass:

Mψ± = Mψ = Mψ1 sin2 θ +Mψ2 cos2 θ. (2.21)

For small sin θ (≈ 0) limit, Mψ± ' Mψ2 . From eq. (2.18), we see that the VLF Yukawa

Y is related to the mass difference between the two physical eigenstates, and is no more a

free parameter:

Y = −
(Mψ2 −Mψ1) sin 2θ√

2vd
= −∆M sin 2θ√

2vd
. (2.22)
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2.2 Pseudo-Dirac mass splitting

Due to presence of the Majorana term: yχχcχΦ, the pseudo-Dirac mass matrix for the

VLF singlet χ can be expressed in the basis (χc χ)T :

Mp−Dirac =

(
mχ Mχ

Mχ mχ

)
, (2.23)

where mχ = yχ
vΦ√

2
�Mχ. The mass matrix can be expressed in terms of physical states as:

Lp−Dirac = (χ χc)

(
mχ Mχ

Mχ mχ

)(
χc

χ

)

≡ (χa χb)

(
Mχ −mχ 0

0 Mχ +mχ

)(
χa

χb

)
≡ χMχχ,

where (χa χb)T is the physical pseudo-Dirac eigenstate. Since mχ � Mχ, which we can

always assume the last equality in above equation by taking either yχ or vΦ or both to be

small. In the presence of the Majorana term, the singlet χ is split into two pseudo-Dirac

states, {χa, χb} which are propagated into the physical states {ψa,b1 , ψa,b2 } via VLF mixing.

As these two pseudo-Dirac states (ψa,b) are nearly degenerate i.e, δm ∼ O (100keV), we

consider them to be a single state ψ =
(
ψa ψb

)T
with mass Mψ, identical to the Dirac

mass of ψ. This will not make difference in DM relic abundance calculations, while for

direct detection, such splitting will play a crucial role in preventing spin independent

elastic scattering mediated by neutral gauge bosons.

3 Constraints on the model parameters

The phenomenology of the model is mainly dictated by following free parameters:

{gB−3Lτ , ṽ, vΦ, θ23, sin θ, Mψ1 , ∆M}, (3.1)

where ∆M = Mψ2 −Mψ1 is the difference between heavy and light VLF mass eigenstates.

All these parameters are important for both DM as well as collider phenomenology as we

shall see later. But before going into the details of parameter space scan, here we would

like to explain how different parameters arising in the model are already constrained from

theoretical as well as existing experimental bounds. Especially existing collider bound

on the mass of the neutral gauge boson ZB−3Lτ puts stringent constraint on the model

parameters. Apart from that, there are bounds from stability of the scalar potential and

perturbativity of dimensionless couplings, collider bounds on non-standard scalar masses

and mixings, and bounds from light neutrino mass.

3.1 Stability, perturbativity and tree-level unitarity

3.1.1 Stability

Stability of the scalar potential is mainly dictated by the quartic terms of the scalar po-

tential, V (H,Φ,S) which is defined as:

V (4) (H,S,Φ) = λH |H|4 +λΦ|Φ|4 +λS |S|4 +λ1|H|2|Φ|2 +λ2|H|2|S|2 +λSΦ|Φ|2|S|2. (3.2)
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In order to ensure the bounded-from-below condition in any field direction, the quartic cou-

plings of the potential (eq. (3.2)) must obey the following co-positivity conditions [71, 72]:

λH ≥ 0, λΦ ≥ 0, λS ≥ 0

λ1 + 2
√
λHλΦ ≥ 0, λ2 + 2

√
λHλS ≥ 0, λSΦ + 2

√
λΦλS ≥ 0,√

λHλSλΦ +
λ1

2

√
λS +

λ2

2

√
λΦ +

λSΦ

2

√
λH

+

√
2

(
λ1

2
+
√
λHλΦ

)(
λ2

2
+
√
λHλS

)(
λSΦ

2
+
√
λSλΦ

)
≥ 0 . (3.3)

3.1.2 Perturbativity

To prevent perturbative breakdown of the model, all quartic, Yukawa and gauge couplings

should obey the following limits at any energy scale:

|λH | < 4π, |λΦ| < 4π, |λS | < 4π,

|λ1| < 4π, |λ2| < 4π, |λSΦ| < 4π,

|yαj | <
√

4π, |yτ3 | <
√

4π, |yj3| <
√

4π,

|yχ| <
√

4π, |Y | <
√

4π,

|gi=1,2,3| <
√

4π, |gB−3Lτ | <
√

4π, (3.4)

where j = 1, 2 and α = e, µ.

3.1.3 Tree-level unitarity

The quartic couplings of the scalar potential which are shown in eq. (3.2) are also con-

strained from the following tree level perturbative unitarity conditions [73–75]:

|λH | ≤ 4π, |λS | ≤ 4π,

|λ1| ≤ 8π, |λ2| ≤ 8π, |λSΦ| ≤ 8π,

|x1,2,3| ≤ 16π, (3.5)

where, x1,2,3 are the cubic roots of the polynomial equation detailed in appendix C.

3.2 Constraint from electroweak precision observables (EWPO)

Since our model has two BSM scalars and two vector like fermions, hence there should

be corrections to the SM electroweak precision observables (EWPO) i.e, S,T ,U param-

eters [76–79]. Here we would like to estimate the effect of the BSM particles on those

parameters. We have four parameters, namely Ŝ, T̂ , W and Y [80] where Ŝ is related

to the Peskin-Takeuchi parameter S: Ŝ = αS
4s2w

and T̂ = αT where α is the fine structure

constant and sw ≡ sin θw corresponds to sine of the Weinberg angle θw. The parameters,

W and Y on the other hand, are new set of parameters. T parameter is more significant

for small mixing in the scalar sector and the constraint on T -parameter is parametrised by

the following data [6]: ∆T = T xSM − T SM = 0.07± 0.12, where we consider contributions
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from both the VLFs and the non-standard scalars to T xSM. In this situation ∆T is given

by [81, 82]:

∆T = T scalar(h1, h2, h3)− T SM Higgs(h1) + TVLF, (3.6)

which indicates how much the oblique parameter is shifted from the SM value. Now,

T scalar = − 3

16πs2
w

c2
12

 m2
h1

log

(
m2
h1

m2
Z

)
c2
w

(
m2
h1
−m2

Z

) − m2
h1

log

(
m2
h1

m2
W

)
m2
h1
−m2

W



+s2
12


(
m2
h2

log

(
m2
h2

m2
Z

))
c2
w

(
m2
h2
−m2

Z

) −
m2
h2

log

(
m2
h2

m2
W

)
m2
h2
−m2

W




− 3

16πs2
w

c2
13

 m2
h1

log

(
m2
h1

m2
Z

)
c2
w

(
m2
h1
−m2

Z

) − m2
h1

log

(
m2
h1

m2
W

)
m2
h1
−m2

W



+s2
13


(
m2
h3

log

(
m2
h3

m2
Z

))
c2
w

(
m2
h3
−m2

Z

) −
m2
h3

log

(
m2
h3

m2
W

)
m2
h2
−m2

W


 ,

(3.7)

and T SM Higgs(h1) can be obtained by using the decoupling limits s12 → 0 and s13 → 0 in

eq. (3.7). The contribution from VLF DM is followed as,

TVLF =
g2

2

16πm2
W

(
−2 sin2 θ Π(Mψ,Mψ1)

)
− g2

2

16πm2
W

(
2 cos2 θ Π(Mψ,Mψ2)

)
+

g2
2

16πm2
W

(
2 cos2 θ sin2 θ Π(Mψ1 ,Mψ2)

)
,

(3.8)

where

Π(mi,mj) = −1

2

(
m2
i +m2

j

)(
div + log

(
µ2
EW

mimj

))

+mimj

div +

(
m2
i +m2

j

)
log

(
m2
j

m2
i

)
2
(
m2
i −m2

j

) + log

(
µ2
EW

mimj

)
+ 1



− 1

4

(
m2
i +m2

j

)
−

(
m4
i +m4

j

)
log

(
m2
j

m2
i

)
4
(
m2
i −m2

j

) ,

(3.9)

In eq. (3.7) mh1 refers to the SM Higgs boson with mass 125 GeV, while mh2,3 are the

two non-standard Higgs bosons appearing in our model. mW and mZ are the masses of
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SM W and Z bosons respectively. The expression for T -parameter corresponding to the

contribution from the VLFs is given by eq. (3.8), where g2 is the SU(2)L SM gauge coupling.

The Π’s appearing in the expression are given as in eq. (3.9) and these correspond to the

gauge boson propagator correction due to the VLFs. Here ‘div’ is the usual expression that

appears in dimensional regularisation: div = 1
ε + ln 4π − γε, with γε = 0.577 is the Euler-

Mascheroni constant (ε = 4 − d, d ≡ spacetime dimension in dimensional regularisation).

Note that the divergence appearing in the last term in eq. (3.8) (due to the divergences in

eq. (3.9)) is cancelled by the first two terms . The physical mass eigenstates appearing in

this case are Mψ, Mψ1 and Mψ2 (Mψ ≡Mψ± according to eq. (2.21)). Once more we would

like to remind that Mψ2 ≈Mψ± under small mixing limit as apparent from eq. (2.21).

The bound on Ŝ comes from a global fit: 103Ŝ = 0.0± 1.3 [80]. For S-parameter, we

consider contribution only due to the VLFs4 as given by [21, 79]:

Ŝ =
g2

2

16π2

(
Π̃
′ (
Mψ± ,Mψ± , 0

)
− cos4 θΠ̃

′
(Mψ1 ,Mψ1 , 0)− sin4 θΠ̃

′
(Mψ2 ,Mψ2 , 0)

)
− g2

2

16π2

(
2 sin2 θ cos2 θΠ̃

′
(Mψ2 ,Mψ1 , 0)

)
,

(3.10)

where g2 is the SU(2)L gauge coupling. The expression for vacuum polarization for identical

masses (at q2 = 0) [79]:

Π̃
′
(mi,mi, 0) =

1

3
div +

1

3
ln

(
µ2
EW

m2
i

)
. (3.11)

For two different masses (mi 6= mj) the expression for vacuum polarization reads [79]:

Π̃
′
(mi,mj , 0) =

(
1

3
div +

1

3
ln

(
µ2
EW

mimj

))
+
m4
i − 8m2

im
2
j +m4

j

9
(
m2
i −m2

j

)2

+

(
m2
i +m2

j

)(
m4
i − 4m2

im
2
j +m4

j

)
6
(
m2
i −m2

j

)3 ln

(
m2
j

m2
i

)

+mimj

1

2

m2
i +m2

j(
m2
i −m2

j

)2 +
m2
im

2
j(

m2
i −m2

j

)3 ln

(
m2
j

m2
i

) .

(3.12)

Note that all the divergences appearing in eq. (3.11) and (3.12) along with the renor-

malization scale µEW , are cancelled on substitution in eq. (3.10).

We have constrained the two most important free parameters of our model, namely

DM mass Mψ1 and ∆M using these constraints. These are depicted in figure 1. On the

left hand side (l.h.s. ) of figure 1 we have shown the allowed values of Mψ1 and ∆M that

obey the constraint from T -parameter given by eq. (3.6). What we see from the plot in

the l.h.s. of figure 1, for small VLF mixing (sin θ ≤ 0.5) it is always possible to get large

∆M & 500 GeV for DM mass upto 1 TeV within the permissible range of the T -parameter.

4As only T -paramter is important for scalar extension of the SM in small mixing case [81, 82].
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Figure 1. Left: constraints on DM mass Mψ1 and ∆M from T parameter measurement for

sin θ : {0.1, 0.3, 0.5, 0.7} shown in red, green, blue and black respectively. Right: limit from Ŝ

on DM mass Mψ1
and ∆M for different choices of sin θ : {0.1, 0.3, 0.5, 0.7} shown respectively in

orange, green, blue and red.

For sin θ & 0.7, however, the parameter space a is constrained as ∆M as large as 1 TeV can

not be achieved for low DM mass. In the r.h.s. of figure 1 we have shown the allowed range

of S-parameter in Mψ1-∆M plane. Here we see, for small sin θ ∼ 0.1 the whole parameter

space is allowed (gray region), however for larger sin θ & 0.3 one has to stick to lower DM

mass. Thus, S parameter constraints the DM mass for large sin θ. But in any case it is

always possible to have a large ∆M within the observed range of S and T parameter.

3.3 Constraint on ZB−3Lτ mass from LHC

Experimental limits from LEP II constrains such new gauge sector by putting a lower bound

on the ratio of new gauge boson mass to the new gauge coupling MZ′/g
′ ≥ 7 TeV [83, 84].

The corresponding bounds from the LHC experiment have become stronger than this by

now. As the main motivation to choose family non-universal gauge boson is to have weaker

collider bounds on its mass, hence it is of utmost importance to realise what choice of the

free parameters can give rise to right ZB−3Lτ mass satisfying LHC bounds.

Search for heavy neutral Higgs and ZB−3Lτ resonances have been performed at

the LHC [35], with the assumption that the heavy resonances decay to τ+τ− final

states. These searches rule out mZB−3Lτ
< 2.42 TeV at 95% CL for sequential SM

and mZB−3Lτ
< 2.25 TeV at 95% CL for non-universal G (221) model. We choose

mZB−3Lτ
& 2.5 TeV for a conservative limit. This puts a bound on three parameters

in our model, namely: {gB−3Lτ , ṽ, vΦ}. This is shown in figure 2, where each contour

corresponds to mZB−3Lτ
= 2.5 TeV and hence the region right to each of the contours is al-

lowed from collider constraint. We have chosen three different VEVs vΦ : {1.0, 2.0, 3.0} TeV

corresponding to red, green and blue contours respectively. As it is seen, larger vΦ allows
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Figure 2. Contours satisfying mZB−3Lτ
' 2.5 TeV are shown following eq. (2.14) for three different

choices of vΦ : {1.0, 2.0, 3.0} TeV in red, green and blue respectively.

larger gauge boson mass, which is in accordance with eq. (2.14). One should note here,

eq. (2.14) has a consequence. It does not allow to fix either the gauge coupling or ṽ for

a fixed vΦ. As a result, for the parameter space scan we have varied both gB−3Lτ and

ṽ for a fixed vΦ to keep the ZB−3Lτ mass in the right ballpark (& 2.5 TeV). Here we

would like to mention that a combination of Bs-Bs mixing from flavour physics, together

with ATLAS’ Z
′

search puts a bound on third family hypercharge models by requiring

mZ′ > 1.9 TeV [85]. However, as we are considering even more conservative bound, our

models is safe from such constraints arising from flavour physics measurements.

3.4 Bounds on singlet scalar from collider

The bounds on singlet scalars typically arise due to their mixing with the SM Higgs boson.

The bound on such scalar mixing angles would come from both theoretical and experimental

constraints [86, 87]. In case of scalar singlet extension of SM, the strongest bound on

scalar-SM Higgs mixing angle (θm) comes form W boson mass correction [88] at NLO for

250 GeV . mh2 . 850 GeV as (0.2 . sin θm . 0.3) where mh2 is the mass of other physical

Higgs. Whereas, for mh2 > 850 GeV, the bounds from the requirement of perturbativity

and unitarity of the theory turn dominant which gives sin θm . 0.2. For lower values

i.e. mh2 < 250 GeV, the LHC and LEP direct search [89, 90] and measured Higgs signal

strength [90] restrict the mixing angle sin θm dominantly (. 0.25). The bounds from the

measured value of EW precision parameter are mild for mh2 < 1 TeV. In our analysis we

have two singlet scalars which we intend to keep below TeV range. Now considering all the

possible bounds, we make conservative choices of the mixing angles (with SM Higgs) as

sin θ12, sin θ13 ∼ 0.1. We also fix vΦ & 1 TeV which helps in keeping the perturbativity of

the theory intact. The other mixing angle sin θ23 is a free parameter. We keep it below 0.2.
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3.5 Neutrino mass

The light neutrino mass matrix can be generated via type I seesaw mechanism

Mν = −MDM
−1
R (MD)T , (3.13)

where

MD =


ye1vd ye2vd 0

yµ1vd yµ2vd 0

0 0 yτ3vd

 and MR =


M11 M12 y13vS

M12 M22 y23vS

y13vS y23vS 0


as obtained from the Yukawa interaction of SM leptons in eq. (2.15) and singlet neutral

fermions in eq. (2.6). Now, the neutrino mixing angles and mass squared differences are

precisely measured from neutrino oscillation experiments [6]. This, in turn, puts bound

on model parameters including the VEV vS and relevent Yukawa couplings. This can be

understood from the light neutrino mass matrix itself. Diagonalising the mass matrix in

eq. (3.13) with the usual 3 × 3 PMNS matrix (choosing the charged lepton mass matrix

diagonal) gives the light neutrino masses. We can choose: ye1 = ye2 = yµ1 = yµ1 ≡ yl,

y13 = y23 ≡ y, M11 = M22 = M . With this, if we assume vS ∼ O (TeV) and yl '
yτ3 ∼ O(10−7), then we can produce correct order of light neutrino mass for y ∼ 0.1

and M ' 1 TeV. Even if we take M ' 10 TeV or a different order of magnitude for

vS , correct light neutrino mass can still be obtained with Yukawa couplings of the similar

order. However, in that case, the RHNs are beyond the present collider reach. We have

kept vS ∼ O(TeV) such that ZB−3Lτ can be produced at the coillders, which determines

the collider signature for this model. And as we have shown above, this choice is not in

contradiction with the neutrino mass generation. For simplicity, in our analysis we shall

assume that the annihilation of the DM to RHN final state is kinematically forbidden.

In that case the Yukawa couplings y, yl and yτ3 do not play important role in the DM

or collider analysis of this model, hence we can fix them to produce the neutrino mass

(as well as mixing) in the right ballpark without disturbing the outcome of the DM or

collider phenomenology. Note that, the requirement of generating correct neutrino mass

does not put a very tight constraint on the choice of the VEV vS . Thus, in this model,

the DM sector and neutrino sector are closely connected even though the bounds on dark

sector from right neutrino mass requirement is not very stringent. It should be noted from

the structure of MR that if we had considered a singlet scalar having B − 3Lτ charge 6

instead of 3, MR will have 3− 3 element non-zero but 1− 3, 2− 3 elements zero. This, as

can be checked by using the light neutrino mass formula in eq. (3.13), will give rise to a

phenomenologically unacceptable light neutrino mass matrix. This once again justifies the

choice of singlet scalars and their B − 3Lτ charges made in our model.

Here we would also like to mention that the TeV scale RHNs have decay lifetime

τN ∼ 10−13 sec considering SM neutrino with scalar final state: N → ν, h1 for our choice of

Yukawa couplings. This shows that the RHNs do not contribute to the DM relic abundance

as τN � τuniverse(∼ 1017 sec). Also, since they decay very fast (� 1 sec) to SM final

states, they do not perturb the standard Big Bang Nucleosynthesis (BBN) picture and
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hence unconstrained from BBN data. However, for certain choices of lightest neutrino

mass, RHN having such gauge interactions can be long lived enough to give interesting

collider signatures like displaced vertices, as studied recently by the authors of [54]. Before

ending this subsection, we note that, although neutrino mass and mixing do not constrain

the mass of B−3Lτ gauge boson directly, constraints on neutrino non-standard interactions

(NSI) can be used to set a lower bound on such gauge boson mass as mZB−3Lτ
/gB−3Lτ >

4.8 TeV [91]. Since we are considering the stronger bounds from the LHC and LEP II in

our analysis, such weaker bounds are trivially satisfied.

4 Dark matter phenomenology

The lightest charge neutral state, ψ1 in VLF sector is the stable DM candidate in our

model. It is naturally stable in this set-up precisely due to the B− 3Lτ charge assignment

(discussed in the subsection 2.1). In this section we have explored in detail the parameter

space appearing in eq. (3.1) allowed by observed relic abundance (Ωh2 = 0.120± 0.001 [4])

and direct search limits (particularly from the XENON 1T experiment [29]).

4.1 Relic abundance of the DM

Relic density of DM, ψ1 is governed by SM Higgs (h1) and heavy Higgs (h2, h3) mediated

annihilation and co-annihilation types number changing processes along with SM gauge

boson (Z, W±, γ) and additional heavy gauge boson (ZB−3Lτ ) mediated annihilation and

co-annihilation type processes. All the relevant Feynman graphs contributing to the DM

relic abundance are listed in appendix D. The number density of DM can be computed by

solving the Boltzmann equation [5] of the form:

dn

dt
+ 3Hn = −〈σv〉eff

(
n2 − n2

eq

)
, (4.1)

with n = nψ1 and H being the Hubble parameter in radiation dominated universe. All

types of DM number changing processes are taken into account inside 〈σv〉eff [92, 93] which

is given by

〈σv〉eff =
ḡ2

1

g2
eff

〈σv〉ψ1ψ1
+

2ḡ1ḡ2

g2
eff

〈σv〉ψ1ψ2

(
1 +

∆M

Mψ1

) 3
2

e
−x ∆M

Mψ1

+
2ḡ1ḡ3

g2
eff

〈σv〉ψ1ψ−

(
1 +

∆M

Mψ1

) 3
2

e
−x ∆M

Mψ1

+
2ḡ2ḡ3

g2
eff

〈σv〉ψ2ψ−

(
1 +

∆M

Mψ1

)3

e
−2x ∆M

Mψ1

+
ḡ2

2

g2
eff

〈σv〉ψ2ψ2

(
1 +

∆M

Mψ1

)3

e
−2x ∆M

Mψ1

+
ḡ2

3

g2
eff

〈σv〉ψ+ψ−

(
1 +

∆M

Mψ1

)3

e
−2x ∆M

Mψ1 , (4.2)
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In above equation, geff is defined as the effective degrees of freedom, given by

geff = ḡ1 + ḡ2

(
1 +

∆M

Mψ1

) 3
2

e
−x ∆M

Mψ1 + ḡ3

(
1 +

∆M

Mψ1

) 3
2

e
−x ∆M

Mψ1 , (4.3)

where ḡ1, ḡ2 and ḡ3 are the internal degrees of freedom of ψ1, ψ2 and ψ± respectively, and

x = xf =
Mψ1
Tf

, where Tf is the freeze out temperature.

Relic density of ψ1 one can approximately expressed as [94]:

Ωψ1h
2 '

xf√
g∗

854.45× 10−13 GeV−2

〈σv〉eff

(4.4)

where xf ≈ 20 and g∗ = 106.7, the degrees of freedom for all SM particles . Note here that

we have not used the above approximate formula for computing DM (ψ1) relic density. In

order to calculate relic density, we have used the package MicrOmegas [95] for which the

model files are generated from LanHEP [96].

To see the behaviour of DM (ψ1) relic density, we have fixed the VEV vΦ = 3.0 TeV

such that the mass of ZB−3Lτ is always above the collider bound (mZB−3Lτ
> 2.5 TeV) for

suitable choices of ṽ and gB−3Lτ as shown in figure 2. We have also fixed the masses of

all the non-standard scalars as {mh2 , mh3 , mA} = {200, 300, 250} GeV obeying existing

collider bounds as described in subsection 3.4 . All scalar mixing angles are also kept

fixed: {sin θ12, sin θ13, sin θ23} = {0.1, 0.1, 0.2}. We have kept fixed the above parameters

throughout our analysis. For the above choice of free parameters, other dependent quartic

couplings are determined by eq. (2.13). With this choice of parameters, we first illustrate

how the relic abundance of the DM varies with DM mass for different choices of VLF

mixing sin θ, ∆M , the new gauge coupling gB−3Lτ and the ratio of the VEVs ṽ, keeping

all other parameters fixed at their values mentioned before.

In the top left panel of figure 3 we have shown how the relic abundance of the DM

changes with its mass for different choices of the VLF mixing sin θ : {0.05, 0.1, 0.5} in solid

black, black dashed and black dot-dashed lines respectively. We have kept ∆M = 50 GeV

fixed and chose gB−3Lτ = 0.2 with ṽ = 1.3 such that ZB−3Lτ mass satisfies the collider

bound (> 2.5 TeV). The very first feature that one should note is the presence of three

major resonant drops due to SM Higgs (Mψ1 ∼ mh1/2), SM Z (Mψ1 ∼ mZ/2) and new

gauge boson ZB−3Lτ (Mψ1 ∼ mZB−3Lτ
/2). As one can notice, with the increase in sin θ, the

DM becomes more and more under-abundant as the annihilation via Z and Higgs bosons

h1,2,3 become more dominant, increasing the total annihilation cross-section. ∆M in this

case is large enough and we can safely ignore the effects of co-annihilation. In the top right

panel of figure 3 we have illustrated how relic abundance varies with the DM mass for three

choices of ∆M : {5, 100, 500} GeV shown in solid black, dashed black and dot-dashed black

curves respectively while keeping sin θ fixed at 0.1 along with gB−3Lτ = 0.2 and ṽ = 1.3.

For small ∆M the co-annihilation plays dominant role, making the DM under-abundant.

On the other hand, for large ∆M , co-annihilation becomes sub-dominant, and as a result

the Higgs (h1,2,3) mediated resonance peaks become more prominent. Here one can notice

that h1,2,3 mediated resonances are more visible for large value of ∆M , as the corresponding

annihilation processes dominate. It is interesting to note from this plot that as we increase
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Figure 3. Top: variation of relic abundance of ψ1 with Mψ1 for different choices of the VLF mixing

sin θ : {0.05, 0.1, 0.5} keeping ∆M = 50 GeV fixed (top left) and for different choices of ∆M :

{5, 100, 500} GeV keeping sin θ = 0.1 fixed (top right). gB−3Lτ = 0.2 and ṽ = 1.3 are kept fixed for

both of these plots. Bottom: variation of relic density with Mψ1
plotted for two different choices of

gB−3Lτ : {0.2, 0.3} for fixed value of ṽ = 1.3, ∆M = 50 GeV and sin θ = 0.1. In all three plots, the

horizontal dashed line (red coloured) corresponds to the central value of Planck limit on DM relic [4].

∆M from 100 GeV to 500 GeV, the relic abundance decreases for Mψ1 & 50 GeV. This

is due to the fact that, although increased ∆M decreases the efficiency of coannihilation

processes, it increases the VLF coupling with SM Higgs, thereby increasing the scalar

mediated annihilation processes.

Finally, in the bottom panel of figure 3 we have shown two different sets of {ṽ, gB−3Lτ } :

{6, 0.05}; {1, 0.3} in solid black and dashed black curves respectively. This gives two

different resonances at DM mass Mψ1 ∼ 2.7
2 TeV and Mψ1 ∼ 3.0

2 TeV due to two different

masses of ZB−3Lτ . The nature of the two curves is almost identical except for two different

resonances at mZB−3Lτ
/2. This clearly tells the fact that the dependence of DM relic

abundance on the new gauge coupling gB−3Lτ is mild compared to the dependence on the

VLF mixing sin θ and mass difference ∆M . In each of the plots the dashed red straight

line corresponds to the central value of Planck limits on DM relic abundance [4].

We now scan all the free parameters of our analysis in the following range:

Mψ1 : {1− 4000 GeV}; ∆M : {1− 1000 GeV}; sin θ : {0.01− 0.5};
gB−3Lτ : {0.01− 0.3}; ṽ : {0.1− 5.0}.

(4.5)

Here we remind the readers once again that the choices for other parameters are kept fixed

in the analysis as: sin θ12 = 0.1, sin θ13 = 0.1, sin θ23 = 0.2, mh2 = 200 GeV, mh2 =
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300 GeV ,mA = 250 GeVand vΦ = 3.0 TeV . The gauge coupling gB−3Lτ is varied upto

0.3, such that the model remains valid at high scale which we shall discuss in detail later.

Throughout the scan we have ensured that mZB−3Lτ
& 2.5 TeV by properly adjusting

gB−3Lτ and ṽ, keeping vΦ fixed at 3 TeV as mentioned earlier.

The allowed parameter space from relic density requirement set by Planck experiment

is shown in figure 4 in Mψ1-∆M plane. In the top left corner of figure 4 we have shown this

parameter space for different ranges of the VLF mixing sin θ shown in red (0.01 ≤ sin θ <

0.05), green (0.05 ≤ sin θ < 0.1), blue (0.1 ≤ sin θ < 0.3) and black (0.3 ≤ sin θ < 0.5)

where 0.05 ≤ gB−3Lτ ≤ 0.3. The relic abundance criteria is satisfied by moderate to

large sin θ, while small sin θ’s are confined near SM Z and SM Higgs resonance and near

∆M ∼ 10 GeV for Mψ1 & 100 GeV. In order to understand the pattern more clearly we

have chosen a fixed sin θ = 0.2 and plotted the same parameter space in the top right corner

of figure 4. For DM mass around Mψ1 ∼ 20 GeV there are only a few annihilation channels

open for the DM. Now, for small ∆M co-annihilation comes into picture, increasing the

effective annihilation cross-section (in eq. (4.2)). This causes the initial under abundance for

small ∆M . On further increasing ∆M , co-annihilation becomes sub-dominant. As a result

the DM becomes over abundant since the effective cross-section (eq. (4.2)) diminishes. For

Mψ1 ' 40−70 GeV there is a huge under abundant region (green points) due to Z and SM

Higgs resonances. Upon further increasing DM mass, we again get under-abundant regions

in low ∆M region due to enhanced coannihilation and high ∆M region due to increased

scalar portal annihilations as well as the resonance of the heavy scalars (h2,3), which we

noticed while discussing the behaviour of figure 3 as well. As mentioned earlier, the Higgs

portal Yukawa Y becomes large enough in such a case (being proportional to ∆M for a fixed

sin θ) resulting a net increase in the annihilation cross-section. For DM mass ∼ 1 TeV there

is a huge overabundant region in the parameter space. This is due to the 1/M2
ψ1

suppression

in the annihilation cross-section due to heavy DM mass. Correct relic abundance is still

possible to reach at a very large ∆M as then the Yukawa Y becomes large enough to

compensate the decrease in cross-section due to mass suppression. Large Y can also be

achieved by increased the VLF mixing sin θ and for sin θ . O(1) we can satisfy correct

abundance in this region even with moderate ∆M . As we go beyond DM mass of 1 TeV,

ZB−3Lτ resonance shows up (as the minimum value of mZB−3Lτ
is 2.5 TeV). Now, since both

ṽ and gB−3Lτ are being varied, mZB−3Lτ
is not fixed (according to eq. (2.14)). As a result,

the resonance region is not sharp but broad due to different mZB−3Lτ
. For all possible

choices of ṽ and gB−3Lτ according to eq. (4.5), mZB−3Lτ
is being varied between ∼ 2.5 TeV

to ∼ 12 TeV. Because of this, the resonance band lies between Mψ1 ' {2.5
2 −

12
2 } TeV for all

possible ∆M . It is seen that regions corresponding to over-abundance, under-abundance

and right relic overlap on each other in the ZB−3Lτ resonance region due to different values

of mZB−3Lτ
and ∆M . Note that if we go to even higher DM mass we will still find relic

abundance allowed parameter space due to resonances from different mZB−3Lτ
.

As seen from the top left plot of figure 4, for DM massMψ1 & 100 GeV (with sin θ > 0.1,

there exists two different ∆M for sameMψ1 which satisfies correct relic density requirement.

To understand this, we plot relic density versus ∆M for different values of Mψ1 shown in

the bottom left panel of figure 4. Here also, the two different values of ∆M , giving correct
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Figure 4. Top Left: relic density allowed parameter space for DM ψ1 in Mψ1 -∆M plane for

different ranges of sin θ depicted in the inset of figure where 0.05 ≤ gB−3Lτ ≤ 0.3. Top Right:

under abundance (green region), over abundance (orange region) and right relic density (blue)

regions are shown in same Mψ1
-∆M plane for a fixed sin θ = 0.2 . Bottom left: variation of relic

abundance with ∆M for some choices of DM mass: 20 GeV (solid black curve), 100 GeV (dashed

black curve) and 500 GeV (dot dashed black curve). For this plot gB−3Lτ = 0.2, ṽ = 0.32 and

sin θ = 0.2. The horizontal dashed line (red coloured) corresponds to the central value of Planck

limit on DM relic [4] Bottom right: relic density allowed parameter space in Mψ1
-∆M plane for

different ranges of gB−3Lτ depicted in the inset of figure and sin θ : {0.01− 0.5}.

relic for same DM mass are visible for Mψ1 & 100 GeV. As it is observed, for DM mass say,

100 GeV (black dashed curve) the relic abundance first rises with increase in ∆M . This

happens due to the fact that the co-annihilation becomes sub-dominant due to increase in

∆M , which, in turn, reduces the effective annihilation cross-section. At some point right

relic density is reached (∆M ∼ 10 GeV) as the annihilation and co-annihilation are just

sufficient to produce the correct abundance. After that, the relic abundance becomes more

or less constant for a small ∆M range and then again the abundance starts going downhill

as the Yukawa Y becomes large enough making the net annihilation cross-section larger.

The cumulative result top right and bottom left panels of figure 4 is reflected in the top left

corner of the same figure for 0.01 . sin θ . 0.5. For completeness, in the bottom right cor-

ner of figure 4 we have shown the relic density allowed parameter space for different choices

of the new gauge coupling gB−3Lτ . As we noticed earlier in figure 3, there is no strong

dependence of the relic abundance on gB−3Lτ . This is evident from this plot as different

coloured points (corresponding to different gB−3Lτ ) are scattered within the allowed region
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of ∆M −Mψ1 parameter space. In passing we would like to comment that the annihila-

tion to RHN final states is suppressed because of heavy mass of the RHNs and also their

contribution to total annihilation cross-section is negligible compared to the SM quarks.

4.2 Direct detection of dark matter

The presence of the Z and ZB−3Lτ mediated DM-nucleon scattering diagrams highly con-

strain the parameter space of singlet-doublet model by pushing sin θ to a very small value

which, in turn, forces ∆M to be small [19]. This can be avoided by exploiting the pseudo-

Dirac splitting of the VLFs [20, 97]. As mentioned in section 2, the presence of the VLF

singlet Majorana term splits the Dirac states into two pseudo-Dirac states with a mass

difference between the two. From eq. 2.2 we see that due to the presence of the Majorana

term (generated by the singlet scalar Φ) and mixing between the singlet-doublet fermions,

the physical mass eigenstate ψ1 splits into two pseudo-Dirac states: {ψi1, ψ
j
1}. In such a

scenario, interaction of the DM with Z (ZB−3Lτ ) can be written as [20, 97]:

L ⊃ ψ̄i1i/∂ψ
i
1 +

¯
ψj1i/∂ψ

j
1 + gzψ̄i1γµψ

j
1Z

µ, (4.6)

where Z ∈ {Z,ZB−3Lτ } and gz = gL sin2 θ
2cW

for SM Z and gz = 3
4gB−3Lτ sin2 θ for ZB−3Lτ

mediation, cW ≡ cos θW stands for cosine of the Weinberg angle. Note that, the Z-mediated

interaction term is off-diagonal unlike the kinetic terms due to the pseudo-Dirac nature of

the VLFs. This results in an inelastic scattering of the DM in which the DM is scattered

to an excited state via Z mediation. As pointed out in [98], such an inelastic scattering

can occur only if the splitting between the two pseudo-Dirac states ψi1 and ψj1 satisfies:

δmax <
β2

2

Mψ1MN

Mψ1 +MN
. (4.7)

As computed in [97], δ ∼ 100 keV can forbid the inelastic scattering mediated by

Z(ZB−3Lτ ) for a DM mass ∼ O(100 GeV) with β . 220 km/s. This is to be noted here,

the splitting between the two pseudo-Dirac states is so small (∼ 100 keV) that it can be

ignored in determining the relic abundance of the DM, but has to be taken into account for

computing the direct detection cross-section (as emphasised earlier). The mass splitting

between ψi1 and ψj1 in terms of our model parameter is given by:

δmχ = yχ cos2 θvΦ. (4.8)

From eq. (4.8) one can put a bound on the VLF mixing and the Yukawa yχ for δm ∼
100 keV such that the heavy neutral gauge boson mediated diagrams are switched off.

This is depicted in figure 5. As we can see, in order to forbid such inelastic scattering

one can choose yχ ∼ O(10−8), then for all small mixing the inelastic scattering can be

forbidden. Now, such a choice of scalar VEVs and small Yukawa is not in conflict with

the neutrino mass generation. Again, in order to satisfy the direct detection bound, we

need to confine sin θ . 0.5 which is safe even if we consider the conservative bound from

figure 5 corresponding to vΦ = 1 TeV, which anyway we require to keep all the masses

within the reach of the ongoing collider experiment. Therefore, for all practical purposes,
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Figure 5. Choice of Yukawa yχ and VLF mixing sin θ (via eq. (4.8)) in order to forbid the

inelastic scattering via heavy neutral gauge bosons. The purple and pale blue regions correspond

to vΦ : {1, 10} TeV respectively. Each colored region is where inelastic scattering gets disallowed.

we can safely ignore the scattering via heavy neutral gauge bosons in order to evade the

stringent direct detection exclusion limit.

The direct detection of the VLF DM in this case, therefore, takes place dominantly

via the elastic scattering mediated by the scalars (h1,2,3). This is depicted in figure 6. The

spin-independent (SI) direct detection cross section per nucleon is given by [99]:

σSI =
1

πA2
µ2 |M|2 , (4.9)

where A is the mass number of the target nucleus, µ =
Mψ1

MN

Mψ1+MN
is the DM-nucleus reduced

mass and |M| is the DM-nucleus amplitude, which reads:

M =
∑
i=1,2

[
Zf ip + (A− Z) f in

]
. (4.10)

The effective couplings (with form factors [100]) in eq. (4.10) are:

f ip,n =
∑

q=u,d,s

fp,nTq α
i
q

mp,n

mq
+

2

27
fp,nTG

∑
Q=c,t,b

αiQ
mp,n

mQ
, (4.11)
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Figure 6. Feynman graph showing the elastic spin independent direct detection scattering for DM

ψ1 and nucleus via scalars h1,2,3. Note that, in this case i = j, while Z : {Z, ZB−3Lτ } mediated

diagrams are forbidden due to inelastic stattering as i 6= j.

Figure 7. Left: relic density allowed parameter space in Mψ1 -σSI plane for different choices of sin θ

(the colour codes are same as figure 4). The present bound from XENON1T is shown by the orange

thick dashed curve, while the grey region below corresponds to the neutrino floor: neutrino-nucleon

coherent elastic scattering. Right: parameter space available in Mψ1
-∆M plane after imposing

bounds from both relic abundance and direct detection (colour codes are same as before).

with

α1
q = −mq

vd
Y sin θ cos θ

(
c2

12c
2
13

m2
h1

)
(4.12)

α2
q = −mq

vd
Y sin θ cos θ

(
s2

12c
2
13

m2
h2

)
(4.13)

α3
q = −mq

vd
Y sin θ cos θ

(
s2

13

m2
h3

)
, (4.14)

where c12 = cos θ12, c13 = cos θ12 and s13 = sin θ13 are the scalar mixing angles, defined

earlier. The parameter space satisfying right DM relic abundance in comparison to the
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present bound from direct search experiment is shown in the l.h.s. figure 7 for different

choices of VLF mixing sin θ and gauge coupling gB−3Lτ . We have also shown how much

of the parameter space is under the infamous neutrino floor [101] where it is extremely

difficult or even impossible to distinguish DM signal from the SM neutrino background

(light grey region). In the l.h.s. of figure 7 we see near the Z and Higgs resonance, small

and moderate sin θ’s are allowed by direct search (0.01 . sin θ . 0.3). For Mψ1 & 100 GeV

larger sin θ’s are also allowed as the direct search cross-section has a suppression from heavy

scalars: σSI ∼ µ2 sin2 θ
m4
hi

. Small sin θ . 0.1 are always allowed by direct search because they

produce smaller scattering cross-section, but they are mostly devoured by the neutrino floor

as shown by the grey region in figure 7. On the r.h.s. of figure 7 we see the relic density

allowed parameter space that also satisfies direct search bound. In the low DM mass region,

specifically near Z and Higgs resonances we can achieve large ∆M for moderate sin θ. But

if ∆M becomes too large & 500 GeV then one has to resort to small sin θ to tame down

the Yukawa Y in order to satisfy both relic abundance and direct search limits. For larger

DM mass large ∆M is still allowed near the non-standard scalar resonances ∼ 100 GeV

and ∼ 150 GeV. Beyond ∼ 150 GeV large ∆M is achieved with larger sin θ, while the

DM remains still allowed by direct search due to suppression from heavy scalars mentioned

earlier. With DM mass & 400 GeV the points move towards smaller ∆M in order to reach

right relic exploiting co-annihilation as we have seen earlier in figure 3. Beyond 1 TeV DM

mass, the direct detection bound becomes weak as the DM mass is large, while because of

ZB−3Lτ resonance there is a huge parameter space that satisfy relic abundance. As a result,

for Mψ1 & 1 TeV, almost all of the parameter space is allowed from direct detection for

all possible ∆M . We would like to remind here once more that this is the novel feature of

the pseudo-Dirac states that this model offers, which helps to achieve larger ∆M without

constraining sin θ to a great extent. Larger sin θ is required to distinguish this model at

the colliders as we shall elaborate in section 6.

5 High scale stability and perturbativity

In this section we will discuss the high scale feature of the model. To be specific, here we

will constrain the relic density, direct detection satisfied points by applying perturbativ-

ity/unitarity and vacuum stability bounds till some high energy scale. For this purpose

we need to consider the RG running of associated couplings through β functions. We have

used PyR@Te 2.0.0 [102] to extract the β functions corresponding to the gauge couplings,

relevant scalar and fermionic couplings present in the model which are listed in appendix B.

For simplicity, we show only the one loop β functions for both SM and BSM parameters in

appendix B while in our numerical calculations, we consider the three loop beta functions

for SM particles due to better precision of SM parameters.

The non violation of perturbativity/unitarity conditions (eq. (3.4) and eq. (3.5)) for

various couplings can be assured by analysing their runnings using the β functions. In our

analysis, some of the Yukawa like couplings (yχ, yαi , y13, y23) are assumed to be very

small. Hence they have negligible influence in the RG running of themselves and other

parameters. In addition, we also fix the VEV of the singlet scalar fields within TeV range
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Figure 8. Parameter space satisfying DM relic and direct detection bounds (blue points) and

perturbativity/unitarity till MP (orange points) are shown in (left) Y − gB−3Lτ and in (right)

∆M − gB−3Lτ plane.

and scalar mixing angles . 0.2. These in turn fix the magnitude of the scalar couplings

which are positive and stays below ∼ 0.1. With these order of magnitude initial values,

they are not expected to break the perturbativity conditions at high energy scale. The

other two important parameters we consider are Y and gB−3Lτ which play vital role in

DM phenomenology as well as in collider analysis. Largeness of these two parameters

could destroy the high scale perturbativity/unitarity of the theory. Therefore we will

focus on Y − gB−3Lτ plane and see the bounds coming from the requirement of satisfying

perturbativity/unitarity criteria. While focusing on this particular plane of our interest,

we also make sure that none of the other parameters violate the above mentioned criteria.

First, in left panel of figure 8 we show the points (blue colored) in Y − gB−3Lτ plane

which satisfy relic, direct detection bounds. Then we constrain the same plane using the

perturbativity criteria till µ = MP (orange colored points), where MP is the Planck scale.

It is clear that applying the perturbativity criteria significantly cuts the earlier parameter

space with Y & 0.8 and gB−3Lτ & 0.25. Similar exercise has been done in ∆M − gB−3Lτ

plane which is shown in right panel of figure 8.

Now the conditions of the stability or the boundedness of the scalar potential in the

model till some high energy scale along various field directions are provided in eq. (3.3).

Recall that the EW vacuum stability (stability of Higgs potential) is dictated by the con-

dition λH > 0. However for more accurate analysis, one should consider the radiatively

improved Higgs potential where the one loop correction will be provided by SM fields and

other BSM fields. The radiatively corrected one loop effective Higgs potential (at high

energies h� vd) can be written as [103, 104],

V eff
h =

λeff
H (µ)

4
h4, (5.1)

with λeff
H = λSM,eff

H + λ
(S,Φ), eff
H + λ

(ψ,χ), eff
H where λSM,eff

H is the SM contribution to λH . The

other two contributions λ
(S,Φ), eff
H and λ

(ψ,χ), eff
H are due to the newly added fields in the
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present model as provided below [105, 106].

λ
(S,Φ),eff
H (µ) = e4Γ(h=µ)

[
λ2

1

32π2

(
ln
λ1

2
− 3

2

)
+

λ2
2

32π2

(
ln
λ2

2
− 3

2

)]
, (5.2)

λ
(ψ,χ),eff
H (µ) = −e4Γ(h=µ)

[
Y 2

16π2

(
ln
Y 2

2
− 3

2

)]
, (5.3)

where Γ(h) =
∫ h
mt
γ(µ)dlnµ and γ(µ) is the anomalous dimension of the Higgs field [59].

Note that we have ignored the radiative corrections involving yχ, yαi , y13, y23 as they are

fixed to negligibly small values in our analysis. Now with the inclusion of radiative correc-

tion to Higgs potential, the stability condition of Higgs vacuum will be modified as λeff
H > 0.

The remaining co-positivity conditions in eq. (3.3) will determine the boundedness of the

scalar potential in different field directions.

We numerically solve the three loop RG equations for all the SM couplings and one

loop RG equations for the other relevant BSM couplings in the model from µ = mt to

MP energy scales considering mt = 173.1 GeV [6], SM Higgs mass mH = 125.09 GeV [6]

and strong coupling constant αs = 0.1184. We also use the initial boundary values of

all the SM couplings as provided in [59]. The boundary values have been determined at

µ = mt in [59] by taking various threshold corrections and mismatch between top pole

mass and MS renormalised couplings into account. One important point is to note that

during the running of couplings, we will ignore the small mass differences between the

masses of heavy BSM Higgs bosons and DM particles for the sake of simplicity. The

β function of λH includes positive contributions from the scalar couplings and negative

contributions from fermionic couplings. Therefore, with yt ∼ O(1) in SM, large value of Y

could destabilise the EW vacuum. The initial value of λH also gets a positive shift due to

the presence of additional scalars in the set up as evident from eq. (2.13). The amount of

shift depends on the masses of the heavier Higgs bosons and also the corresponding mixing

angles. With our choices for them as specified earlier the magnitude of the shift comes

out to be ∼ 0.02. Note that we have also considered all the other scalar couplings positive

and ∼ O(0.1) in our analysis. Hence considering small order of magnitude of Yukawa like

couplings (yαi , y13, y23, yχ), the BSM scalar couplings are expected to remain positive in

their evolution, thus automatically guaranteeing the stability of the total scalar potential

in the corresponding field directions (when λH > 0).

Now we further constrain the Y −gB−L parameter space which is allowed from pertur-

bativity criteria (figure 8) along with correct DM related observables using vacuum stability

conditions. Before that in figure 9, we show running of λH(λeff
H ) for two different DM relic

+ direct detection + perturbativity bounds satisfying points having Y ∼ 0.25 and 0.46

respectively. As it can be seen, for lower value of Y λH(λeff
H ) remains positive throughout

its running till MP energy scale thereby establishing the stability of EW vacuum. On the

other hand for Y ∼ 0.46, λH(λeff
H ) crosses zero around µ ∼ 1015 GeV and ends with negative

value at µ = MP . Hence it is clear that large values of Y are disfavoured in our analysis as

it could destabilise the Higgs vacuum. The plots in figure 10 also shows that the running

of λH and λeff
H are similar and they almost merge near the energy scale µ = MP . Finally

in figure 10, we constrain left panels of figure 8, using both perturbativity and the vacuum
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Figure 9. Left: running of λH(λeff
H ) for two DM relic and direct detection bound satisfying points

with (left) Y ∼ 0.25 and (right) Y ∼ 0.46.

Figure 10. Parameter space satisfying DM relic abundance, direct detection, perturbativity and

vacuum stability (till MP ) bounds in (left) Y − gB−3Lτ plane and (right) ∆M − gB−3Lτ plane.

stability criteria in both Y − gB−L and ∆M − gB−3Lτ planes. Now when we compare

figure 8 with figure 10, it clearly shows that the upper limit on Y is significantly reduced

from 0.8 to 0.3 due to the application of vacuum stability criteria till energy scale MP .

However upper limit on gB−3Lτ remains more or less unaltered (. 0.25) as it does not have

direct role in stability analysis. Similar conclusion can be drawn for ∆M also. As before,

all the points in these plots satisfy DM related bounds.

Before we move on further, let us first choose a few benchmark points (BPs) which

we shall be using for the collider study. Note that, all these BPs need to satisfy correct

relic abundance, direct detection bound, vacuum stability and perturbativity constraints

and on top of that should give rise to ZB−3Lτ mass in correct range. These are enlisted

in table 2. We also include the values of relevant EW precision parameters in table 2 for

all the benchmark points which show they fall within correct experimental range. Another

point is to note that these BPs are selected in the decreasing order to gB−3Lτ from top

to bottom where BP1 has highest gB−3Lτ and BP5 has the smallest gB−3Lτ . As we shall

see in section 6, the production cross-section of ψ± will be large for small ∆M and not

for large gB−3Lτ . This is due to the fact that larger gB−3Lτ results in heavier mZB−3Lτ
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Benchmark ṽ gB−3Lτ sin θ ∆M Mψ1
|Y | 103Ŝ ∆T σDD Ωh2 mZB−3Lτ

Point (vS/vΦ) (GeV) (GeV) (cm2) (TeV)

BP1 1.75 0.20 0.28 194.9 128.5 0.301 0.43 0.005 10−45.96 0.122 2.57

BP2 2.33 0.16 0.11 517.4 55.4 0.311 0.06 0.004 10−46.71 0.119 2.73

BP3 3.50 0.11 0.46 130.1 300.5 0.305 1.30 0.004 10−45.59 0.121 2.79

BP4 3.63 0.10 0.14 274.0 36.5 0.218 0.03 0.003 10−46.78 0.120 2.61

BP5 5.49 0.07 0.42 111.4 245.5 0.248 1.23 0.003 10−45.81 0.119 2.68

Table 2. Choices of the benchmark points used for collider analysis. Masses, mixings, relic density

and direct search cross-sections for the DM candidate are tabulated. In each case corresponding

mass of ZB−3Lτ is also quoted.

Figure 11. Pair production of charged VLFs and their subsequent decay to OSD+ /ET final state.

(for fixed VEV), which, in turn causes propagator suppression for ψ± production (via

ZB−3Lτ ) leading to decrease in cross-section. However, even if ∆M is small, but Mψ1 is

large, the production cross-section may still be small. All the BPs satisfy the invisible

SM Higgs and SM Z decay constraint as shown in the appendix. A. Finally we would like

to highlight that LEP has set a lower limit on pair-produced charged heavy vector-like

leptons: mL > 101.2 GeV at 95 % C.L. for L± = νW final states [107]. Thus all our

benchmark points are safe from LEP bounds.

6 Collider phenomenology

The detailed study of collider signature for vector like fermions can be found in [97, 108].

As we have already seen, due to the pseudo-Dirac nature of the VLFs large ∆M can be

achieved satisfying both relic abundance and direct search. Such large ∆M ’s are actually

beneficial in order to distinguish this model at the collider from the SM background [97].

It is to be noted that the charged component of SU(2)L doublet VLF can be produced at
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Figure 12. Left: plot showing improvement in production cross-section of the charged VLF pair

due to ZB−3Lτ mediation for two choices of {gB−3Lτ , ṽ} : {0.2, 1.8}&{0.3, 0.8} shown in black

dashed and black dotted curves respectively. Right: variation of ψ± pair production cross-section

with Mψ± for gB−3Lτ ṽ varying in the range: {0.05, 0.3} and {0.8, 5.5} when both Z and ZB−3Lτ

mediation are taken into account. The BPs tabulated in table 2 are also indicated in black. Note

that BP1 and BP4 have almost overlapped because of similar production cross-section. All the

points on the scan satisfy mZB−3Lτ
& 2.5 TeV. For both the plots

√
s = 14 TeV is chosen with

CTEQ6l as parton distribution function.

the LHC via SM Z, ZB−3Lτ and photon mediation. The charged VLF can further decay

via on-shell and/or off-shell W (depending on whether ∆M & 80 GeV or ∆M . 80 GeV)

to the following final states:

• Hadronically quiet opposite sign dilepton (OSD) with missing energy (`+`− + /ET ).

• Single lepton, with two jets plus missing energy (`± + jj + /ET ).

• Four jets plus missing energy (jjjj + /ET ).

We shall focus only on the leptonic final states as they are much cleaner compared

to others, the Feynman diagram for which is depicted in figure 11. To be more specific,

we shall only look into the hadronically quiet dilepton final states as we are interested

to see how the presence of ZB−3Lτ can affect the coillder signatures compared to purely

Z mediated scenarios studied earlier. The presence of ZB−3Lτ significantly increases the

production cross-section of the charged VLF pairs at the collider. This is due to the fact

that the decay of the BSM neutral gauge boson to the charged VLFs now happens on-

shell in contrast to models where this decay takes place off-shell via SM Z boson and

photon [20, 97]. Also, as there is no negative interference between the Z and ZB−3Lτ

mediated charged VLF production channels, hence the addition of new channel always

improves the production cross-section. In order to illustrate this improvement, we first

show the variation of production cross-section σpp→ψ+ψ− in the l.h.s. of figure 12 for two

different choices of {gB−3Lτ , ṽ}. One noteworthy feature of this plot is that the production

cross-section is lower for the choice {gB−3Lτ , ṽ} = {0.2, 1.8} (black dotted curve) than for

{gB−3Lτ , ṽ} = {0.3, 0.8} (black dashed curve). This is simply attributed to the propagator

suppression due to larger mass of ZB−3Lτ in the former case (mZB−3Lτ
= 3.36 TeV) over
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the latter (mZB−3Lτ
= 2.54 TeV). On the r.h.s. of figure 12 we have illustrated how the

production cross-section changes for different choices of gB−3Lτ and ṽ (and hence mZB−3Lτ
)

keeping vΦ fixed at 3 TeV when both Z and ZB−3Lτ mediations are present. gB−3Lτ and ṽ

are chosen in such a way that mZB−3Lτ
is always above the LHC lower bound. In the same

plot we have also shown our chosen BPs appearing in table 2. Note that, the production

cross-section for BP2 is the least, while it is highest for BP1 and BP4 (overlapped on

each other). This tells the fact that though large ∆M is necessary in distinguishing the

model at the collider (as we shall see) but at the same time we need to compromise with

the production cross-section. Again, the production cross section for Mψ± & 800 GeV is

either very small (kinematically) or discarded by stability and perturbativity bound on Y

as larger Mψ± requires larger ∆M , which in turn makes Y large and that is constrained

from figure 10. Although Y can be tamed down by choosing a small sin θ as per eq. (2.22)

but the production cross-section will still remain small. Therefore, we have overlooked all

such benchmarks. In both the plots the production cross-section decrease with the increase

in charged VLF mass showing the unitarity of the cross-section remains valid.

6.1 Object reconstruction and simulation details

As already mentioned, we implemented this model in LanHEP and the parton level events

are generated in CalcHEP [109]. Those events are then passed through PYTHIA [110] for

showering and hadronisation. All the SM backgrounds that can mimic our final state are

generated in MADGRAPH [111] and the corresponding production cross-sections are multiplied

with appropriate K-factor [111] in order to match with the next to leading order (NLO)

cross-sections. For all cases we have used CTEQ6l as the parton distribution function

(PDF) [112]. Now, in order to re-create the collider environment, all the leptons, jets and

unclustered objects have been reconstructed using the following set of criteria:

• Lepton (l = e, µ): leptons are identified with a minimum transverse momentum pT >

20 GeV and pseudorapidity |η| < 2.5. Two leptons can be distinguished separately if

their mutual distance in the η − φ plane is ∆R =
√

(∆η)2 + (∆φ)2 ≥ 0.2, while the

separation between a lepton and a jet needs to be ∆R ≥ 0.4.

• Jets (j): all the partons within ∆R = 0.4 from the jet initiator cell are included

to form the jets using the cone jet algorithm PYCELL built in PYTHIA. We demand

pT > 20 GeV for a clustered object to be considered as jet. Jets are isolated from

unclustered objects if ∆R > 0.4.

• Unclustered objects: all the final state objects which are neither clustered to form jets,

nor identified as leptons, belong to this category. Particles with 0.5 < pT < 20 GeV

and |η| < 5 are considered as unclustered. Although unclustered objects do not

interfere with our signal definition but they are important in constructing the missing

energy of the events.

• Missing energy ( /ET ): the transverse momentum of all the missing particles (those

are not registered in the detector) can be estimated from the momentum imbalance
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in the transverse direction associated to the visible particles. Missing energy (MET)

is thus defined as:

/ET = −

√√√√√
∑

`,j

px

2

+

∑
`,j

py

2

, (6.1)

where the sum runs over all visible objects that include the leptons, jets and the

unclustered components.

• Invariant dilepton mass (m``): we can construct the invariant dilepton mass variable

for two opposite sign leptons by defining:

m2
`` = (p`+ + p`−)2 . (6.2)

Invariant mass of OSD events, if created from a single parent, peak at the parent

mass, for example, Z boson. As the signal events (figure 11) do not arise from a single

parent particle, invariant mass cut plays key role in eliminating the Z mediated SM

background.

• HT : HT is defined as the scalar sum of all isolated jets and lepton pT ’s:

HT =
∑
`,j

pT . (6.3)

For our signal the sum only includes the two leptons that are present in the final

state.

We shall use different cuts on these observables to separate the signal from the SM

backgrounds and predict the significance as a function of the integrated luminosity. This

is shown in the next section.

6.2 Event rates and signal significance

Here we would first like to show how the presence of new charge neutral gauge boson me-

diation can affect the pair production cross-section of the charged VLFs. This is explicitly

tabulated in table 3 where we have listed the production cross-sections for our chosen BPs

(table 2) both in the presence and in the absence of ZB−3Lτ . As expected, in each case,

the production via Z and ZB−3Lτ together is larger than that of only Z mediation. The

improvement, however, is not significant enough due to the reasons mentioned earlier.

In figure 13 we have shown the distribution of normalised number of events with respect

to MET (upper panel) and HT (lower panel) for all the chosen BPs. In the same plot we

have also shown the distribution from dominant SM backgrounds that can mimic our signal.

For the SM the only source of MET are the SM neutrinos, which are almost massless with

respect to centre of mass energy of the collider. As a result, the MET and HT distribution

for SM peaks up at a lower value, while for the model MET arises from the DM ψ1 (on top

of the SM neutrinos) which is massive, and hence corresponding distribution for the signals

are much flattened. Noteworthy feature here is that, for larger ∆M the signal distributions
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Figure 13. Top left: distribution of normalized number of signal and background events with MET

for BP(1,2,3). Top right: same as top left for BP(4,5). Bottom left: distribution of normalized

number of events with HT for BP(1,2,3). Bottom Right: same as bottom left for BP(4,5). All

simulations are done at
√
s = 14 TeV.

Benchmark σpp→ψ+ψ− σpp→ψ+ψ−

Point (Z + ZB−3Lτ ) (Only Z)

(fb) (fb)

BP1 45.27 44.72

BP2 3.82 3.71

BP3 15.78 15.69

BP4 46.76 46.62

BP5 32.12 32.02

Table 3. Production cross-section of charged VLF pairs for the chosen BPs in table 2 in presence

of ZB−3Lτ (left column) and in presence of only SM Z (right column).
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Benchmark /ET σOSD

Points (GeV) (fb)

BP1 > 100 0.82

> 200 0.21

> 300 0.06

BP2 > 100 0.53

> 200 0.24

> 300 0.08

BP3 > 100 HT > 250 GeV 0.04

> 200 0.006

> 300 0.001

BP4 > 100 1.45

> 200 0.38

> 300 0.12

BP5 > 100 0.05

> 200 0.01

> 300 0.002

Table 4. Variation of final state signal cross-section with MET cut for a fixed cut on HT > 250 GeV.

All simulations are done at
√
s = 14 TeV.

are well separated from that of the background. This is due to the fact that the peak of the

MET distribution is determined by how much of pT is being carried away by the missing

particle (i.e, the DM), which in turn depends on the mass difference of charged and neutral

component of the VLF i.e, ∆M . Hence for larger ∆M the DM carries away most of the pT
making the distribution much flatter, while for smaller ∆M the distribution peaks up at

lower value as the produced DM particles are not boosted enough. As a consequence, in the

l.h.s. of top left panel of figure 13 we see BP3 (in blue) is completely submerged in the SM

background, while BP1 (in red) can still be distinguished to some extent. BP2, because

of large ∆M has a rather flattened distribution (in green) and therefore can be easily

distinguished from the background with judicious choice of cuts. On the top right panel

of figure 13 we have shown the MET distribution for BP4 (red) and BP5 (green). Here

we also see the same consequence: with comparatively larger ∆M BP4 can be separated

from the background, while BP5 shows no excess over the SM background. This trend is

similar for HT distribution, which we have shown in the bottom panel of figure 13.

From the distributions one can easily see, with a MET cut of /ET & 200 GeV and a HT

cut of & 250 GeV one can get rid off the SM backgrounds keeping most of the signal events

intact. This is also shown in table 4 where we have demonstrated the cut-flow i.e, how the

number of events vary with MET cut, while the HT cut is kept fixed HT > 250 GeV. On
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Processes σproduction /ET σOSD

(pb) (GeV) (fb)

tt̄ > 100 0

814.64 > 200 0

> 300 0

W+W− > 100 5.99

99.98 > 200 0.99

> 300 0

W+W−Z > 100 HT > 250 GeV 0.05

0.15 > 200 0.02

> 300 0.009

ZZ > 100 < 1

14.01 > 200 0

> 300 0

Table 5. Variation of final state SM background cross-section with MET cut for a fixed cut on

HT > 250 GeV. All simulations are done at
√
s = 14 TeV.

Figure 14. Significance of benchmark points BP(1-5) at the LHC in terms of integrated luminosity.

The solid red and dashed red lines correspond to 3σ and 5σ discovery limits respectively.

– 35 –



J
H
E
P
1
0
(
2
0
1
9
)
2
7
5

top of that we have also imposed the invariant mass cut over Z-window such that no events

lie in the range: |mZ−15| . m`+`− . |mZ+15| in order to reduce the SM Z background as

explained earlier. Corresponding cut-flow for dominant SM backgrounds are also tabulated

in table 5. As one can see, the tt̄ background is completely killed by imposing zero jet veto.

Amongst other backgrounds, ZZ also vanishes because of imposition of the m`` cut and

WW is also killed by putting a hard MET cut of 300 GeV. The only remaining background

is due to WWZ but that also becomes insignificant due to large MET cut.

We finally plot the signal significance for the BPs in figure 14 by choosing the final state

events with /ET > 300 GeV and HT > 250 GeV. BP2 and BP4 can reach 5σ discovery for

an integrated luminosity ∼ 200 fb−1 as they have the advantage of large ∆M which helps

them to distinguish from the SM background as explained earlier. Due to comparatively

smaller ∆M BP1 can reach a 5σ discovery at a slightly higher luminosity ∼ 500 fb−1. BP3

and BP5 can only be probed at the very high luminosity (HL-LHC). Here we would also

like to emphasize the fact that this model may also be probed at the collider via stable

charged track signature for ∆M . 80 GeV. In that case the decay of the charged VLFs

happen via off-shell W± and the decay width can be small enough for small sin θ giving

rise to charged tracks of length ∼ O(cm). This has been explored in details in [20, 97] and

hence we refrain from discussing it again here.

7 Summary and conclusion

We have proposed a flavoured gauge extension of the singlet-doublet fermionic dark matter

model by considering B − 3Lτ as the additional gauge quantum number which naturally

stabilises the DM without the need of additional discrete symmetries. The model also

requires the existence of a singlet right handed neutrino (RHN) in order to be anomaly free.

This RHN, along with another one or two singlet RHNs (having zero B−3Lτ charges) can

take part in generating light neutrino masses via type I seesaw mechanism. The neutrino

sector and the DM sector, however, are not very closely related as the bounds on the VEVs

of the non-standard scalars from correct neutrino mass requirement is rather lose. This

is attributed to the fact that light neutrino mass in the right ballpark can be generated

keeping the scalar VEVs ∼ O(TeV) scale by tuning the new Yukawa couplings (y`, yτ3)

accordingly. The family non-universal nature of this B − 3Lτ gauge symmetry also helps

us to avoid strong bounds from the LHC searches. The relatively lighter Z ′ boson plays

a role in generating dark matter relic abundance, leading to an enlarged parameter space

satisfying DM related constraints compared to the purely singlet-doublet model. The

pseudo-Dirac nature of the DM forbids the inelastic scattering via heavy neutral gauge

boson allowing the DM to live over a huge parameter space satisfying both relic abundance

and direct search constraints. Thus the parameter space remians valid upto DM mass of

a few TeV for singlet-doublet VLF mixing of sin θ . 0.5. A substantial portion of the

parameter space however merges with the neutrino floor for smaller sin θ.

Apart from the motivations from dark matter and neutrino mass generation, the model

also provides a solution to the electroweak vacuum metastability problem due to extended

scalar sector. The model not only gives rise to a stable electroweak vacuum but also keeps
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it perturbative all the way upto the Planck scale. The requirements of vacuum stability and

perturbativity however, significantly constrains the parameter space allowed purely from

dark matter related constraints. As an effect of cumulative bound from relic abundance, di-

rect search and stability and perturbativity of the scalar potential, the model substantially

constraints the singlet-doublet Yukawa Y . 0.3 and the gauge coupling gB−3Lτ . 0.25.

However, the mass difference between the heavier and lighter physical states of the VLF:

Mψ2 −Mψ1 = ∆M can still be large enough ∼ 500 GeV providing opportunity for the

model to be probed at the LHC via hadronically quiet dilepton final states with missing

energy excess. This is again attributed to the pseudo-Dirac nature of the VLFs due to

which larger sin θ is allowed from direct search, and hence large ∆M is possible to achieve.

We finally discussed possible signatures at colliders by analysing some of the benchmark

points of the model which satisfy all theoretical and experimental bounds. We particularly

focus on purely leptonic final states with missing energy and show that with judicious

choice of cuts on different kinematical variables (eg. MET, HT etc) it is indeed possible

to attain a 5σ discovery potential for the model at the high luminosity LHC. Apart from

leptonic final states, the model may also be probed via displaced vertex signature due to

the off-shell decay of the charged VLF to SM leptons and neutrino for ∆M . mW .
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A Invisible Higgs and Z decays

The combination of SM channels yields an observed (expected) upper limit on the SM Higgs

branching fraction of 0.24 at 95 % CL [113] with a total decay width Γ = 4.07×10−3 GeV.

This gives rise to an allowed Higgs invisible decay branching fraction of 0.24(0.23). SM Z

boson, on the other hand, can also decay to invisible final states, and hence constrained

from observation: ΓZinv = 499±1.5 MeV [6]. So, if Z is allowed to decay invisibly, the decay

width should not be more than 1.5 MeV. In our case, the decays of SM Higgs and SM Z

are only possible to ψ1ψ1 pairs as other invisible decay modes are kinematically forbidden

because of large ∆M . These decay widths are given by:

Γh1→ψ1ψ̄1
=
Y c2

12 c
2
13 sin2 θ cos2 θ

8π
mh1

(
1−

4M2
ψ1

m2
h1

)3/2

(A.1)

and

ΓZ→ψ1ψ̄1
=
mZ

48π

e2 sin4 θ

s2
W c

2
W

(
1 +

2M2
ψ1

m2
Z

)√
1−

4M2
ψ1

m2
Z

, (A.2)
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Benchmark Brhiggs
inv ΓZinv (MeV)

Point (MeV)

BP1 - -

BP2 0.019 -

BP3 - -

BP4 0.072 0.073

BP5 - -

Table 6. Invisible Higgs branching ratio and invisible Z decay width for different benchmark points

tabulated in table 2. “-” stands for cases where Mψ1 > mZ/2 and/or > mh1/2.

with cW = mW /mZ is the Weinberg angle where mW (Z) is the mass of SM W (Z) boson.

Now, for our chosen BPs we would like to see whether these bounds are applicable or

not. First note that, Higgs invisible decay is possible for BP2 and BP4, while Z can decay

invisibly to DM pairs only for BP4. Rest of the benchmarks are safe from such bounds

as DM mass is much above than SM Higgs or SM Z mass. In table 6 we have tabulated

the invisible branching fraction (Brhiggs
inv ) for SM Higgs (left column) and invisible Z decay

width ΓZinv for SM Z (right column).

B RG equations at one loop

(4π)2βg1 =
43

6
g3

1, (B.1)

(4π)2βg2 =−17

6
g3

2, (B.2)

(4π)2βg3 =−7g3
1, (B.3)

(4π)2βgB−3Lτ
=

757

24
g3
B−3Lτ , (B.4)

(4π)2βλH =λ2
1 +λ2

2 +24λ2
H +

3g4
1

8
+

9g4
2

8
−3λHg

2
1−9λHg

2
2−6y4

t +12λHy
2
t

+
3g2

1g
2
2

4
+4λHY

2 +4λH(y2
α1

+y2
α2

+y2
τ3)−2Y 4−2(y4

α1
+y2

α4
+y4

τ3), (B.5)

(4π)2βλΦ
= 2λ2

1 +λ2
SΦ +20λ2

Φ +
243

8
g4
B−3Lτ −27λΦg

2
B−3Lτ +8λΦy

2
χ−16y4

χ, (B.6)

(4π)2βλS = 20λ2
S−108λSg

2
B−3Lτ +2λ2

2 +λ2
SΦ +486g4

B−3Lτ +λS(y2
13 +y2

23)

− 1

8
(y4

13 +y4
23)− y

2
13y

2
23

4
, (B.7)

(4π)2βλ1 = 2λ2λSΦ +4λ2
1 +12λHλ1 +8λΦλ1 +6λ1y

2
t −

9λ1g
2
2

2
− 27

2
g2
B−3Lτλ1

− 3g2
1

2
λ1 +2λ1Y

2 +2λ1(y2
α1

+y2
α2

+y2
τ3 +4λ1y

2
χ−16Y 2y2

χ), (B.8)
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(4π)2βλ2 = 4λ2
2−54λ2g

2
B−3Lτ +2λ1λSΦ +6λ2y

2
t +12λHλ2 +8λSλ2

− 3λ2g
2
1

2
− 9λ2g

2
2

2
+
λ2

2
(y2

13 +y2
23)+2λ2Y

2 +2λ2(yα2
1
+y2

α2
+y2

τ3)

−y2
α1
y2
τ3−y

2
α2
yα2

3
−y2

α1
y2
α2
, (B.9)

(4π)2βλSΦ
= 8λSλSΦ +4λ2λ1 +4λ2

SΦ +243g4
B−3Lτ +8λSΦλΦ−

135

2
g2
B−LλSΦ

+
λSΦ

2
(y2

13 +y2
23)+4λSΦy

2
χ, (B.10)

(4π)2βyt =
9y3
t

2
−8g2

3yt−
17

12
g2

1yt−
9

4
g2

2yt−
2g2
B−3Lτ

3
yt+Y 2yt

+yt(y
2
α1

+y2
α2

+y2
τ3), (B.11)

(4π)2βY = 3Y y2
t −

3Y g2
1

4
− 9Y g2

2

4
− 27Y

8
g2
B−3Lτ +

5Y 3

2
+Y ((y2

13 +y2
23)+2y2

χ), (B.12)

C Unitarity

Quartic couplings of the scalar potential which are shown in eq. (3.2) are also constrained

from tree level perturbative unitarity. The unitarity bounds are related with scattering

amplitude as: |M| ≤ 8π . M be the scattering amplitude for any 2 = 2 process which can

be expressed in terms of partial waves as follows:

M = 16π

∞∑
l=0

al(2l + 1)Pl(cos θ), (C.1)

where Pl(cos θ) is the Legendre polynomial of order l, al be the partial wave amplitude and

θ be the scattering angle. To implement unitarity bound in our case we form an amplitude

matrix M = Mi=j where i and j correspond to all possible two particle state. And each

eigenvalue of this amplitude matrix, M should lie within 8π (i.e. |ei| ≤ 8π)in order to

maintain unitarity. The amplitude matrix M is decomposed of 22 neutral charged (NC)

and 6 singly charged(SC) two particles state which is given by:

M =

(
(MNC)22×22 0

0 (MSC)6×6

)
. (C.2)

The charged neutral two particles staTes which are formed the sub-matrix, MNC are given

by:

|G+G−〉, |h h√
2
〉, |z1 z1√

2
〉, |φ φ√

2
〉, |z2 z2√

2
〉, | s s√

2
〉, |z3 z3√

2
〉, |φ z2〉, |φ s〉, |φ z3〉, (C.3)

|s z2〉, |z2 z3〉, |s z3〉, |h z1〉, |h φ〉, |h z2〉, |h s〉, |h z3〉, |φ z1〉, |z1 z2〉, |s z1〉, |z1 z3〉;
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MNC =



4λH
√

2λH
√

2λH
λ1√

2

λ1√
2

λ2√
2

λ2√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2λH 3λH λH
λ1
2

λ1
2

λ2
2

λ2
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2λH λH 3λH
λ1
2

λ1
2

λ2
2

λ2
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
λ1√

2

λ1
2

λ1
2

3λΦ λΦ
λSΦ

2
λSΦ

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ1√
2

λ1
2

λ1
2

λΦ 3λΦ
λSΦ

2
λSΦ

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ2√
2

λ2
2

λ2
2

λSΦ
2

λSΦ
2

3λS λS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ2√
2

λ2
2

λ2
2

λSΦ
2

λSΦ
2

λS 3λS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2λΦ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 λSΦ 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 λSΦ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 λSΦ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 λSΦ 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2λS 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2λH 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ2



And the singly charged two particle states for the sub-matrix MSC are as follows:

|G+ h〉, |G+ z1〉, |G+ φ〉, |G+ z2〉, |G+ s〉, |G+ z3〉 ;

MSC =



2λH 0 0 0 0 0

0 2λH 0 0 0 0

0 0 λ1 0 0 0

0 0 0 λ1 0 0

0 0 0 0 λ2 0

0 0 0 0 0 λ2


(C.4)

Each of distinct eigenvalues of the amplitude matrix, M will be bounded from tree level

unitarity as:

|λH | ≤ 4π, |λS | ≤ 4π,

|λ1| ≤ 8π, |λ2| ≤ 8π, |λSΦ| ≤ 8π,

|x1,2,3| ≤ 16π, (C.5)

where, x1,2,3 are the cubic roots of the following polynomial equation:

x3 + x2(−12λH − 8λS − 8λΦ) + x
(
−8λ2

1 − 8λ2
2 + 96λHλS + 96λHλΦ + 64λSλΦ − 4λ2

SΦ

)
+64λ2

1λS − 32λ1λ2λSΦ + 64λ2
2λΦ − 768λHλSλΦ + 48λHλ

2
SΦ = 0 . (C.6)
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D Relevant Feynmann diagrams for DM (co-)annihilation

ψi

ψj

ψk

Z/Z/ha

h/Z/hb

ψi

ψj

ha

f/W±/Z/hb

f/W∓/Z/hc

ψi

ψj

ψ∓

W±

W∓

ψi

ψj

Z

f/W±/ha

f/W∓/Z

Figure 15. Annihilation (i = j) and Co-annihilation (i 6= j) type number changing processes for

Vector like fermionic DM in the model. Here i, j, k = 1, 2; a, b, c = 1, 2, 3 and f stands for SM

fermions.

ψi/ψi

ψ−/ψ+

ψj

Z/ha

W∓/W∓

ψi/ψi

ψ−/ψ+

W±
f/ha/W

∓/W∓

f ′/W±/γ/Z

ψi/ψi

ψ−/ψ+

ψ∓

W∓/W∓

γ/Z

Figure 16. Feynmann diagrams for co-annihilation type number changing processes of ψi (i = 1, 2)

with the charged component ψ± to SM particles. Here f and f ′ stand for SM fermions (f 6= f ′).

ψ+

ψ−

ψi

W+

W−

ψ+

ψ−

γ/Z
f/W+

f/W−

ψ+

ψ−

ψ−

γ/Z

γ/Z

ψ+

ψ−

Z

ha

Z

Figure 17. Feynmann diagrams for charged fermionic DM, ψ± annihilation to SM particles in

final states. Here a = 1, 2, 3.
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ψi

ψj

ψk

ZB−3Lτ /ha/Z/ZB−3Lτ /ZB−3Lτ

ha/ZB−3Lτ /ZB−3Lτ /Z/ZB−3Lτ

ψi

ψj

ZB−3Lτ

ZB−3Lτ /τ/ντ/q

ha/τ/ντ/q

ψi

ψj

ha

ZB−3Lτ

ZB−3Lτ

Figure 18. Additional Feynmann diagrams for DM, ψi due to presence of new gauged paricle

ZB−3Lτ in the model: annihilation (i = j) and Co-annihilation (i 6= j). Here i, j, k = 1, 2; a = 1, 2, 3

and q stand for SM quarks.

ψi/ψi

ψ−/ψ+

ψk

ZB−3Lτ

W∓

ψi/ψi

ψ−/ψ+

ψ∓

W∓

ZB−3Lτ

Figure 19. Feynmann diagrams for co-annihilation processes of ψi (i = 1, 2) with the charged

component ψ± to SM W± and BSM ZB−3Lτ .

ψ+

ψ−

ψ±

ZB−3Lτ , Z, γ

ZB−3Lτ

ψ+

ψ−

ZB−3Lτ

ha/q/τ/ντ

ZB−3Lτ /q/τ/ντ

Figure 20. New Feynmann diagrams for charged fermionic DM, ψ± annihilation due to presence

of new gauged paricle ZB−3Lτ . Here a = 1, 2, 3.
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