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We have improved the tree-level model of Ref. [1] for weak production of kaons off nucleons by 
partially restoring unitarity. This is achieved by imposing Watson’s theorem to the dominant vector and 
axial-vector contributions in appropriate angular momentum and isospin quantum number sectors. The 
observable consequences of this procedure are investigated.
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1. Introduction

A good understanding and realistic modeling of neutrino cross 
sections is important to reduce systematic uncertainties in oscil-
lation experiments [2–6]. Much attention has been paid to quasi-
elastic scattering and weak pion production, which give a large 
contribution in the few-GeV neutrino energy region probed in 
most accelerator experiments. On the other hand, with better 
statistics and higher precision goals, other, largely unexplored, pro-
cesses with smaller cross sections may play a significant role. Kaon, 
and strangeness production in general, belongs to this category.

The charged-kaon production (νμCH → μ−K + X) measurement 
at MINERvA [7] experiment opens a new window to study the 
weak strangeness production mechanisms in detail. The weak pro-
cesses that could lead to kaons in the final state are either ini-
tiated by strangeness conserving (�S = 0) or strangeness chang-
ing (�S = 1) mechanisms. Although the �S = 1 reactions (1K ) 
are Cabibbo suppressed compared to �S = 0 ones (Y K ), the lat-
ter involve the production of massive strange hyperons (Y ), which 
pushes the reaction thresholds higher in neutrino energies. There-
fore, below 2 GeV of incoming neutrino energies, the 1K reac-
tion is favored [1,7]. In nuclei, final state interactions of the pro-
duced kaon are not very strong because of the absence of baryon 
resonances. However, kaons can also be produced in secondary 
collisions, rendering the extraction of information about the ele-
mentary 1K -production amplitudes in experiments with nuclear 
targets rather difficult [8]. As for several other processes, progress 
in our understanding of weak kaon production would greatly ben-
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efit from modern cross section measurements on hydrogen and/or 
deuterium [3].

Theoretical work on weak production of meson-baryon pairs 
with open and hidden strangeness was performed in the early 
days of neutrino physics [9–12] and resumed only recently with 
studies in the �S = 0 [13,14], �S = −1 [15,16] and �S = 1 [1]
sectors. The first calculation of the νl N → l−K N ′ amplitudes us-
ing leading-order SU(3) chiral perturbation theory was performed 
by Alam et al. [1]. The threshold cross section was predicted in 
a model independent way in terms of only three precisely-known 
quantities fπ , D and F , where F and D are the couplings that 
appear from the SU(3) Wigner–Eckart theorem of the axial-vector 
current. To extend the validity of the study to higher energies, the 
hadronic currents were multiplied by a phenomenological global 
dipole form factor. However, as it is based on tree-level diagrams, 
this model neither respects the unitarity of the S matrix, nor it sat-
isfies the related Watson’s theorem [17],1 according to which, the 
phase of the amplitude is determined by the strong meson-baryon 
interaction (K N in this case).

In the present work, we address this issue and partially restore 
unitarity by imposing Watson’s theorem. This is achieved by intro-
ducing relative phases in the amplitudes derived in Ref. [1], as sug-
gested by Olsson in [18] for pion photoproduction. In Refs. [19,20], 
the same strategy has been successfully applied to the weak pion 
production model of Ref. [21]. In the following we briefly present 
the model for �S = 1 K -production and the Watson’s prescription 
to approximately restore unitarity, followed by a discussion on the 
impact of this improvement on observable quantities.

1 A consequence of unitarity of S−matrix and time reversal symmetry.
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2. Formalism

The allowed neutrino-induced �S = 1 single-kaon production 
reaction channels on nucleons are

νl + p → l− + p + K +

νl + n → l− + p + K 0 (1)

νl + n → l− + n + K +.

The differential cross section for the processes of Eq. (1) is given 
by

d4σ

dW dQ 2d�∗
K

= |�p ∗
K |

64(2π)4 E2
ν M2

N

|M|2 (2)

with

|M|2 = 1

4
G2

F |V us|2Lμν Jμν , (3)

where Lμν ( Jμν ) is the leptonic (hadronic) tensor; W is the in-
variant mass of the outgoing kaon-nucleon pair while Q 2 = −q2

stands for minus the square of the four momentum transfer q =
k − k′ , with k and k′ the four momenta of the incoming neutrino 
and outgoing lepton respectively. We fix the lepton kinematics 
and target nucleon in the Laboratory frame, in which Eν denotes 
the incoming neutrino energy (= k0). The outgoing K N system is 
treated in the rest frame of the pair, referred to as the hadronic 
center-of-mass (HCM) frame. We represent HCM quantities with a 
‘∗’ superscript. In Eq. (2), the kaon momentum (�p ∗

K ) and solid-
angle (�∗

K ) are indeed in the HCM frame. The Fermi coupling 
constant (G F ) and the Cabibbo-Kobayashi-Maskawa (CKM) matrix 
element, |V us|, have numerical values of 1.166 × 10−5 GeV−2 and 
0.2243 respectively [22].

The leptonic tensor may be written as,

Lμν = 8
[
k′
μ kν + k′

ν kμ − gμν(k′ · k) + iεμνσρk′
σ kρ

]
, (4)

where we follow the convention ε0123 = +1 for the 4-dimensional 
Levi-Civita tensor. Finally, the tensor Jμν can be expressed in 
terms of the W +N → K N ′ hadronic current jμ as

Jμν =
∑
spins

jμ
(

jν
)†

, (5)

where the sum is performed over the spin projections of the 
incoming and outgoing nucleons; W + denotes the virtual weak 
gauge boson. This hadronic current, obtained from the expansion 
of the SU(3) chiral Lagrangian at its lowest order, plus next-to-
leading contributions to weak magnetism, was derived in Ref. [1]. 
The complete set of diagrams that contribute to Eq. (1) are shown 
in Fig. 1. The corresponding expressions that add to jμ are given in 
Eq. (15) of Ref. [1]. The parameters that enter the current are well 
known: the pion decay constant ( fπ ), couplings D and F , fixed 
from nucleon and hyperon semileptonic decays, and measured val-
ues of nucleon magnetic moments. We refer the reader to Ref. [1]
for details. Finally, to extend the kinematic range of the calcula-
tion, a global dipole form factor has been introduced, with a dipole 
mass of 1 ± 0.1 GeV, accounting for higher-order hadronic struc-
ture and its uncertainty.

2.1. Watson’s theorem for weak K -production

Let us consider matrix elements of the transition scattering 
operator (T ) between two-body states with well defined total an-
2

Fig. 1. Feynman diagrams for the hadronic current W +N → K N ′ . From the upper 
left corner in clockwise order: contact (CT), kaon pole (KP), π and η in flight (πP, 
ηP) and u−channel hyperon exchange (Cr
, Cr�) terms.

gular momentum J and particle helicities (λ) in the HCM frame.2

Following the derivation of Sec. II.A of Ref. [19] for weak pion pro-
duction, the S−matrix unitarity and time reversal symmetry imply 
that

∑
λK ′′λN′′

〈 J , M;λK ′′ , λN ′′ |T (s)| J , M;λK , λN ′ 〉∗

× 〈 J , M;λK ′′ , λN ′′ |T (s)| J , M;λW , λN 〉 ∈ R , (6)

for the W +N → K N ′ transition. In the present study, the center-
of-mass energy of the kaon-nucleon system, 

√
s = W , is limited to 

the range in which the only relevant intermediate states in Eq. (6)
are K ′′N ′′ pairs. Therefore, this equation, Watson’s theorem, relates 
the phases of the strong K ′′N ′′ → K N ′ amplitudes with the elec-
troweak W N → K ′′N ′′ ones. The later, up to a real normalization 
constant

〈K ′′N ′′|T |W N〉 ∝ −i jμεμ , (7)

in terms of the hadronic current jμ introduced above and the po-
larization vector of the W boson.3 The W -boson offshellness does 
not affect the present argument [19]. As stated above, we consider 
only K N intermediate states in Eq. (6), restricting the validity of 
the approach to invariant masses of the K N pair below the K K Y
threshold. We further neglect the influence of Kπ N intermediate 
states. This assumption relies on the observation that in the K N
partial waves under consideration (LI,2 J = S0,1 and S1,1; details 
are given below), inelasticities are either exactly equal to one (S0,1) 
or very close to one for invariant masses below 2.1 GeV [23].

To be more specific, in Eq. (6) after setting the kaon helicities 
to zero, we denote as r the helicity of the W gauge boson, and as 
λ, λ′, ρ the corresponding ones of the initial, final and intermedi-
ate nucleons. Furthermore, assigning the z direction (θ = ϕ = 0) to 
the W N incoming pair, one can write

|θ = 0,ϕ = 0; r, λ〉 =
∑

J

√
2 J + 1

4π
| J , M = r − λ; r λ〉 (8)

which follows from Eq. (A1) of Appendix A.1. By taking into ac-
count that T is a scalar and therefore diagonal in J , Eq. (6) can be 
cast as

2 We warn the reader that, although the HCM frame is used throughout 2.1, we 
have dropped the ‘*’ superscript to maintain the readability of equations.

3 Notice that the gauge coupling has been factored out and absorbed in the Fermi 
constant of Eq. (3).
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∑
ρ

〈 J , M; 0,ρ︸︷︷︸
K N

|T (s)| J , M; 0, λ′︸︷︷︸
K N

〉∗

× 〈 J , M; 0,ρ︸︷︷︸
K N

|T (s)|θ,ϕ = 0; r, λ︸︷︷︸
W N

〉 ∈ R , (9)

with M = r − λ. Introducing states with well-defined orbital an-
gular momentum L and spin S , and using their transformation 
properties given in Appendix A.1, one finds∑

L

∑
ρ

2L + 1

2 J + 1
(L,1/2, J |0,−λ′,−λ′)(L,1/2, J |0,−ρ,−ρ)

× 〈 J , M; L,1/2|T (s)| J , M; L,1/2〉∗︸ ︷︷ ︸
K N→K N

× 〈 J , M;0,ρ|T (s)|θ,ϕ = 0; r, λ〉︸ ︷︷ ︸
W N→K N

∈ R , (10)

given that parity is conserved by the strong K N → K N amplitudes. 
Here (L, S, J |ML, M S , M J ) are Clebsch-Gordan coefficients.

Based on the behavior of weak kaon production amplitudes 
close to threshold, it is reasonable to assume that the process un-
der study is dominated by the s−partial wave (L = 0). This implies 
that S = J = 1/2, the nucleon spin. Equation (10) then takes the 
form

χr,λ(s)〈1/2, r − λ;0,1/2|T (s)|1/2, r − λ;0,1/2〉∗ ∈ R (11)

where the shorthand notation

χr,λ(s) =
∑
ρ

〈1/2, r − λ;0,ρ|T (s)|θ,ϕ = 0; r, λ〉 (12)

has been introduced. Up to an irrelevant constant, these functions 
can be written as

χr,λ(s) =
∑
ρ

∫
d� D(1/2)

M −ρ(ϕ, θ,−ϕ)

× 〈θ,ϕ;0,ρ|T (s)|θ,ϕ = 0; r, λ〉 (13)

where D(1/2)
M −ρ are Wigner D-matrices [see Eq. (A1) in Appendix 

A.1]. The integral is performed over the solid angle of the outgoing 
kaon in the HCM frame.

Owing to the V − A nature of the weak interaction, T in Eq. (12)
can be expressed as T V − T A , T V (A) being even (odd) under parity 
inversion. Therefore, it is convenient to write χr,λ = χ V

r,λ − χ A
r,λ . 

We then explore the transformation properties of χr,λ(s) under 
parity from which the following relations are deduced (see Ap-
pendix A.2):

χ V
r,λ = 1

2

(
χr,λ − χ−r,−λ

)
,

χ A
r,λ = −1

2

(
χr,λ + χ−r,−λ

)
.

(14)

They allow to reduce the number of independent functions from 
four vector (axial) ones to two [19] for each of the reaction chan-
nels listed in Eq. (1).4

Finally, we project onto states with well defined isospin (I), in-
troducing isospin amplitudes, and the corresponding χ(I=0,1) func-
tions

χ(1) = χ(W + p → K + p) ,

χ(0) = χ(W + n → K + n) − χ(W + n → K 0 p) .
(15)

4 Combinations with |r − λ| = 3/2 are excluded because J = 1/2.
3

Other indices have been dropped for simplicity. These identities 
allow us to write the χ functions for all three processes in terms 
of only two with I = 0, 1.

From the analysis of Ref. [1] we know that contact term (CT) 
is the largest one for all processes in Eq. (1). We therefore find 
convenient to split the T matrix as T = TC T + T B , where TC T de-
notes the CT term, while the rest of the diagrams of Fig. 1 are 
included in T B . Next, we compute all the independent χ V ,A (I=0,1)

r,1/2
with r = 0, 1 (eight in total), calculated from the CT Feynman dia-
gram. As illustrated in Fig. 2 for a fixed Q 2, we identify χ A(0)

0,1/2 and 
χ

V (1)
0,1/2 as dominant among the CT contributions, and select them 

to determine the Olsson’s phases introduced next.
In order to implement Watson’s theorem to partially restore 

unitarity, we follow the prescription given by Olsson [18]. Namely, 
we introduce phases �V ,A in both vector and axial CT terms, such 
that the modified amplitude reads as

〈θ,ϕ;0,ρ|T (s)|θ,ϕ = 0; r, λ〉
= εrμT V μ

Bλρ(θ,ϕ) − εrμT Aμ
Bλρ(θ,ϕ)

+ εrμT V μ
CTλρ(θ,ϕ) ei�V − εrμT Aμ

CTλρ(θ,ϕ) ei�A ,

(16)

where ε(r,r′)μ, r = 0, ±1, is the W −boson polarization vector. 
Thanks to Watson’s theorem these unknown phases can be de-
termined using the available experimental information about K N
scattering phase shifts. We impose that

Im
{
χ

V (1)
0,1/2(s) e−iδS11

}
= 0 , (17)

Im
{
χ

A(0)
0,1/2(s) e−iδS01

}
= 0 , (18)

where the K N phase shifts δLI,2 J are taken from the SAID database 
(Scattering Analyses Interactive Dialin) of the INS Data Analysis 
Center [23]. Equations (17) and (18) can be used to determine 
Olsson’s phases �V ,A , which are functions of W and Q 2.

3. Results and discussion

The �V ,A(W , Q 2) solutions of Eqs. (17), (18) plugged in 
Eq. (16) correct the relative phase between the CT term and the 
rest of mechanisms. It should be noted, however, that these equa-
tions generally have two solutions5 denoted here as solutions 1 
and 2. The W dependence of these phases is shown in Fig. 3 for 
the same fixed Q 2 used in Fig. 2. The plots show the general ten-
dency for solution 1 (2) to be small (large) phases in the range of 
K N invariant masses under consideration. The four combinations 
of Olsson’s phases �V ,A(W , Q 2) that can be assembled with these 
two solutions lead to different values for observable quantities. In 
Ref. [19], where a similar approach was undertaken for weak pion 
production, the preference for small Olsson’s phases was clearly 
validated by pion photoproduction data (see Fig. 2 of that paper). 
In the present case, there are no equivalent electromagnetic sin-
gle kaon production data that could serve for validation purposes. 
However, as illustrated in Fig. 3, at low W and Q 2, i.e. close to 
threshold, �V ,A ∼ π for solution 2. Such a behavior implies a rel-
ative sign between TC T and T B which is inconsistent with the 
predictions of chiral symmetry encoded in the leading-order La-
grangian. We thus rely on this observation to discard solution 2 in 
our predictions.

The integrated cross sections obtained with solution 1 are 
shown in Fig. 4, together with the reference calculation of Ref. [1], 

5 As discussed in Ref. [19] for pion production, these two solutions lead to χ V (1)
0,1/2

(χ A(0)
0,1/2) with phases δS11(S01) and δS11(S01) + π (K N phase shifts are defined up to 

a summand of π ).
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Fig. 2. Absolute value squared of the CT contribution to χ V ,A
r,λ , defined using Eqs. (12), (14) and (15), as a function of the K N invariant mass (W ) for a fixed Q 2 = 0.1 GeV2. 

Left and right panels stand for isospin I = 0 and I = 1 channels, respectively.

Fig. 3. Olsson’s phases �V ,A obtained by solving Eqs. (17) and (18) as a function of W for a fixed Q 2 = 0.1 GeV2.

Fig. 4. Total cross section σ(Eν ) as a function of the muon-neutrino energy (Eν ) for the processes of Eq. (1). Blue dashed lines stand for the original results of Ref. [1], while 
the predictions obtained after implementing Watson’s corrections, for the chosen solution 1, are shown by the solid black lines.
which did not include the Olsson’s phases. One immediately no-
tices that the partial unitarization causes a small variation in the 
cross section. The largest change, observed in νμn → μ− pK 0, 
amounts to about an 18% increase with respect to the reference 
predictions of Ref. [1] at Eν = 2 GeV. This small effect is plausibly 
a consequence of the weakness (for strong forces) of the K N in-
teractions. One can therefore expect that, in the energy region in 
which the present model is applicable, the size of unitarity correc-
tions is within the model uncertainties (effectively accounted by 
the 10% uncertainty assumed for the dipole mass) at least for the 
total cross section. A reduction of form factors uncertainties be-
low the 10% level would render unitarity corrections significant. 
They could also be disentangled by looking at the W dependence 
at fixed Q 2. Future data for weak single kaon production at low 
energies obtained, for example with the Short Baseline Near De-
4

tector (SBND) [24] at Fermilab, that will collect data with high 
statistics, or in a future neutrino experiment on hydrogen and/or 
deuterium could be compared to our predictions, shedding light 
on this interesting process. Weak kaon production modeling will 
also benefit from ongoing and future efforts to extract baryon elec-
troweak matrix elements from lattice QCD simulations [25]. This is 
the case of studies of 〈B = N ′, Y |q̄γμ(1 −γ5)q|N〉 but, in particular, 
of 〈N K |ūγμ(1 −γ5)s|N〉 contact terms. Transitions to multi-hadron 
states as in the latter matrix element are challenging but there is 
encouraging progress in the meson sector, such as the determi-
nation of γ ∗ π → π π amplitude [26]. In addition, kaon-nucleon 
scattering phase shifts, on which the present approach relies, could 
be alternatively provided by lattice QCD (see Ref. [27] for a recent 
result).
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Fig. 5. A, B, C, D, E structure functions for νμ + N → μ− + N ′ + K as a function of the cosine of the polar kaon angle in the HCM frame (θ∗
K ) for fixed Eν = 2 GeV, W = 1.5

GeV and Q 2 = 0.2 GeV2.
In order to perform a more detailed analysis of the impact of 
unitarity corrections we rely on the following representation of the 
differential cross section, Eq. (2),
5

d4σ

dW dQ 2d�∗
K

= G2
F W

4π MN |�k|2
(

A + B cosφ∗
K + C cos 2φ∗

K

+D sinφ∗
K + E sin 2φ∗

K

)
,

(19)
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where the dependence on the HCM kaon azimuthal angle has been 
singled out [21,28,29]. The incoming neutrino momentum �k is in 
the Laboratory frame while kaon angles (carrying the ‘*’ super-
script) are in the HCM frame. The structure functions A − E are real 
and depend on the scalars Q 2, p ·q, pK ·q and pK · p. We have ob-
tained these structure functions for weak kaon production for the 
first time. They are displayed in Fig. 5 as a function of cos θ∗

K for 
fixed Eν , W and Q 2. Results obtained with solution 1 are close 
to the uncorrected ones as expected. Remarkably, the D and E
structure functions, responsible for parity violation in kaon pro-
duction (and weak meson production in general [29]), which are 
zero in the tree-level model with real amplitudes, acquire nonzero 
although small values due to unitarization.

4. Conclusion

We have improved the theoretical description of single kaon 
production in neutrino-nucleon collisions below the K K Y thresh-
old by partially accounting for unitarity. For this purpose we have 
introduced Olsson’s phases for the contact term of the amplitude 
in its largest vector and axial multipoles. These phases take the 
values required to fulfill Watson’s theorem. In the absence of ex-
perimental data, we have relied on chiral symmetry to discard 
some of the found mathematical solutions. The remaining solu-
tion leads to small corrections in the cross section, as expected 
because of the absence of baryon resonances. These corrections are 
actually within the uncertainties of the model. This would validate 
the reference tree-level model, built upon the leading-order chiral 
Lagrangian, in the kinematic region under consideration. Finally, 
we have investigated the behavior of the structure functions that 
characterize the cross-section dependence on the kaon azimuthal 
angle. The impact of unitarization is visible in the fact that the 
parity-violating structure functions depart from zero.
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Appendix A

A.1. Basis transformations

The states with well defined total angular momentum and the 
two-particle helicity states are related by the transformation rela-
tion:

| J , M J ;λ1, λ2〉

=
√

2 J + 1
∫

d�D( J )∗
M J λ

(φK , θK ,−φK ) |θK , φK ;λ1, λ2〉
(A1)
4π

6

with λ = λ1 − λ2. D( J )
M J λ

(α,β,γ ) is the Wigner rotation matrix 
[30].

In the L-S scheme, where we use the basis | J , M J ; L, S〉 with 
L the orbital angular momentum and S the total spin of the two 
particles, the following relations hold

| J , M J ;λ1, λ2〉 =
∑
L,S

√
2L + 1

2 J + 1
(L, S, J |0, λ,λ)

× ( j1, j2, S|λ1,−λ2, λ) | J , M J ; L, S〉 ,

| J , M J ; L, S〉 =
∑
λ1,λ2

√
2L + 1

2 J + 1
(L, S, J |0, λ,λ)

× ( j1, j2, S|λ1,−λ2, λ) | J , M J ;λ1, λ2〉 ,

(A2)

where ji is the total angular momentum of each particle and 
( j1, j2, J |m1,m2, M) are Clebsch-Gordan coefficients. Equation (A2)
follows from Eq. (A1) and properties of Wigner D-matrices. We re-
fer the reader to Appendix A of Ref. [19] and sections 3.4 and 3.5 
of Ref. [30].

A.2. Properties of χ V ,A
r,λ functions under helicity inversion

In terms of two-particle helicity states with well defined angu-
lar momentum J (= 1/2 in our case)

χ V ,A
r,λ =

∑
ρ

〈1/2, M;0,ρ| T V ,A |1/2, M; r, λ〉 . (A3)

Under parity inversion, these states are transformed as (Eq. (5.28) 
of Ref. [30])

P | J , M;μ1,μ2〉 = η1η2(−1) J−s1−s2 | J , M;−μ1,−μ2〉
in terms of the two particles’ intrinsic parities η1,2 and spins s1,2. 
Therefore

P |1/2, M; r, λ〉 = ηNηW (−1)1/2−1/2−1 |1/2, M;−r,−λ〉 ,

P |1/2, M;0,ρ〉 = ηNηK (−1)1/2−1/2−0 |1/2, M;−r,−λ〉 .

Consequently

χ V ,A
−r,−λ = −

∑
ρ

〈1/2, M;0,ρ| P−1T V ,A P |1/2, M; r, λ〉 ,

where we have taken into account that these matrix elements do 
not depend on M because T is a scalar under rotations. Once 
P−1T V ,A P = ±T V ,A

χ V ,A
−r,−λ = ∓χ V ,A

r,λ , (A4)

from where Eq. (14) immediately follows.
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