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1 Introduction and overview

The dark bubble model, first proposed in [1] and subsequently developed in [2–12], is an
alternative to standard string compactifications, which potentially circumvents the swampland
obstructions against obtaining a stringy model of dark energy. In this paper, we will focus
on presenting a complete and consistent holographic description of this model in terms of
a necessary generalization of techniques used in the AdS/CFT correspondence [13–15]. In
particular, we will sort out how the choice of holographic boundary conditions in our model
is related to the mass of the 4D graviton imprinted on the bubble wall.

Similarly to the Randall-Sundrum scenario [16], the dark bubble model makes use of
branes embedded into a five-dimensional AdS space, even though there are some crucial
differences. The Randall-Sundrum model embeds the universe as a hypersurface between two
higher-dimensional AdS spaces. The extrinsic curvatures on the two sides of the embedded
brane have the same sign, such that the two spaces both correspond to insides with respect
to the braneworld. It is also common to impose a Z2 symmetry, identifying the two bulk
spacetimes. The dark bubble is geometrically very different since the hypersurface is given
by the spherical shell of a bubble of true vacuum expanding inside a decaying metastable
AdS vacuum in the exterior. Clearly, there is no Z2 symmetry, but even more important
is the fact that the bubble has an inside and an outside.

The imbalance between the inner (−) and outer (+) space of the bubble is reflected in
different values of the bulk cosmological constants Λ± = −6k2

±, with k− > k+, on the two
sides of the bubble wall. The cosmological constant outside of the shell is larger than the
one inside of the shell, which induces the decay of the false vacuum to the true one via the
nucleation of a brane. The metric is of the form

ds2 = −f±(r) dt2 + 1
f±(r) dr2 + r2 dΩ2

3 (1.1)

with f±(r) = 1 + k2
±r2 for the interior (−) or exterior (+), respectively. The dynamical

expansion parameter a(t) determines the location of the shell, so that r < a(t) holds for the
inside and r > a(t) for the outside of the bubble. For an observer on the bubble wall, a
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proper time τ can be chosen in such a way that the shell metric recovers the geometry of
a FLRW universe. The proper time evolution of the bubble radius r = a(τ) is determined
by the Israel junction conditions, which require

σ = 3
8πG5

(√
k2
− + 1 + ȧ2

a2 −

√
k2

+ + 1 + ȧ2

a2

)
, (1.2)

where σ is the tension of the shell. Here, ȧ = da/dτ . The critical value of the brane
tension is given by

σcrit := 3
8πG5

(k− − k+), (1.3)

and corresponds to a flat Minkowski universe with vanishing cosmological constant. In case
of the dark bubble, the tension stays slightly subcritical, meaning σ = σcrit(1 − ϵ) with a
small and positive parameter ϵ. With that, equation (1.2) can be expanded in powers of ϵ

yielding the Friedmann equation in four dimensions

H2 ≡ ȧ2

a2 = − 1
a2 + 8πG4

3 Λ4 + O(ϵ2), (1.4)

where
Λ4 = σcrit − σ > 0 (1.5)

is the 4D cosmological constant, associated with a positive energy density. As described
in [1], and reviewed in [2], the 4D Newton’s constant is given by

G4 = 2k−k+
k− − k+

G5. (1.6)

One can also consider more general asymptotically AdS spacetimes, e.g. AdS-Schwarzschild
geometry, which induces an additional term to the Friedmann equation (1.4) that can be
identified as radiation on the bubble wall [1]. Similarly, a spherically symmetric cloud of strings
radially stretched in the bulk can potentially induce four-dimensional matter on the wall [2].

Contrary to RS, neither gravity nor matter is localized on the brane. The uplift of 4D
gravitational waves to 5D has been explored in detail in [10]. There, it was demonstrated
how the dark bubble sustains 5D gravitational waves, which induces the expected 4D waves
in metric on the brane. Furthermore, in [11], it was shown how electromagnetic waves,
identified with the excitations of the gauge field within the brane, source the string theory
Kalb-Ramond B-field in the bulk. The backreaction of these fields on the 5D bulk metric
induces the expected 4D gravitational backreaction. What these works explicitly show, which
is further reviewed in, e.g. [7], is that the matter fields attached to the brane are governed
by dynamics that is constrained to that of 4D Einstein gravity coupled to matter. This
follows from the Gauss-Codazzi equations, which express the induced metric in terms of the
extrinsic curvature and the bulk metric, together with the 5D Einstein equations and the
junction conditions. As explained in [11], the spreading out of matter and gravity in the fifth
dimension only show up as deviations in the Einstein equations at high energy densities.1

1Just as in the case of RS, there are also modifications in the force of gravity at distances of the order
of the AdS-scale. Note that this scale is always assumed to be microscopic. For further discussions on this
see [11, 12].
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The case of RS is superficially similar, but fundamentally different. The key difference is
the junction condition (1.2), where the sign of the second term of the junction condition is
changed from a minus to a plus since there are two insides. Considering the Z2-symmetric
case for simplicity, this leads to an effective 4D cosmological constant given by σ − 2k, and
the 4D Newton’s constant given by G4 = kG5. The changes in the phenomenology these
differences bring about are profound, as elaborated in [4, 7]. In particular, there is now a
lower bound on σ to obtain a positive cosmological constant. Contrary to the case of the dark
bubble, extremal branes are far from the bound, which naturally leads to an AdS braneworld
rather than a universe with positive dark energy. We will not discuss RS any further in
the present paper, but instead focus on how the phenomenologically promising dark bubble
model can be embedded, consistently, in a holographic setting and the consequences thereof.

It turns out that this key difference between the Randall-Sundrum braneworld model
and our dark bubble becomes pivotal to ensure a consistent holographic description of the
latter. Since the bubble has an inside and an outside, it can naturally define a monotonically
increasing holographic direction, contrary to the case of Randall-Sundrum, where a holographic
description requires a mirroring of the holographic direction across the brane. Therefore,
the applicability of holography is even more manifest in our dark bubble model. This is
what we aim to elaborate on in this paper.

Massive particles can be represented by strings that end on the bubble wall and extend
in the radial direction. They represent matter fields in the expanding universe whose masses
are effectively renormalized by virtue of the holographic renormalization of the Newton
constant G4 [4]. The energy carried by the endpoints of the strings is associated with
non-normalizable metric modes on the boundary hypersurface. However, there is no obvious
reason why non-normalizable modes should be necessary or even wanted in a holographic
description. Here, we show that this follows quite naturally from the requirement of a massless
graviton in a quantum description of gravity, induced on the bubble wall. The present work
presents a systematic and consistent holographic approach to elucidate the pivotal role of
bulk non-normalizable modes in obtaining a massless graviton on the bubble wall. These
non-normalizable modes, in the context of the dark bubble model, are manifestations of string
sources which eventually provide the energy for the expansion of the bubble [4]. A very similar
role of the non-normalizable modes in the context of the Karch-Randall braneworld model [17]
has been discussed in a recent work [18]. Our conclusion is very much in line with that.

In the holographic setup, variation of the gravity action in AdS5 yields a boundary
contribution of the form

δS5 = 1
2

∫
∂M

d4x
√
−γT (CFT)

µν δγµν , (1.7)

where γµν is the induced metric on the cutoff hypersurface r = a and γ is the determinant
of γµν on that hypersurface. T

(CFT)
µν is the bare stress-energy tensor of the dual conformal

field theory living on the r = a hypersurface. Conventionally, in this holographic setup one
tends to employ Dirichlet boundary conditions on the boundary hypersurface, which fix
the boundary metric. As a consequence, (1.7) vanishes leading to a well-defined variational
principle. Nevertheless, by construction, it does not allow for any dynamical boundary metric.
On the contrary, having a dynamical metric on the bubble wall is a necessity in our model in
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order to reproduce an expanding universe. From (1.7) it is therefore clear that in order to
achieve a dynamic metric on the wall, we do need to go for different boundary conditions
that can be imposed without requiring to fix the metric on the boundary. One possibility
to obtain such a dynamic geometry on the boundary has been investigated in the context
of holographic cosmology [19, 20], where it was shown that a “mixed” boundary condition
instead of a usual Dirichlet can potentially yield cosmological evolution on the boundary.
This mixed boundary condition, which amounts to adding a suitable local action on the
boundary, falls into the allowed class of boundary conditions in AdS/CFT [21]. We show in
this paper that this particular choice of boundary condition is crucial to obtain a holographic
realization of the dark bubble model.

The structure of this paper is as follows: to set the stage, in section 2 we start with a
lightning review of the holographic approach to cosmology, emphasizing the importance of
choosing an appropriate boundary condition to obtain expanding cosmology on a cutoff near
the boundary of an asymptotically AdS spacetime. This involves a holographic renormalization
of the induced Newton’s constant, and the cosmological constant on the cutoff brane. In
section 3, we illustrate the role of normalizable modes in inducing a massive graviton in
the simple setup of holographic cosmology discussed in section 2. In this model, there is
only one AdS bulk, which we generalize, in section 4, to accommodate our dark bubble.
Apart from having an inside and an outside, this model also requires consideration of the
dynamics of the brane source. Incorporating both these features, and adopting the lessons
learnt from previous sections, we present the computation of the graviton propagator on
the bubble wall. Our computation elucidates the precise role of non-normalizable modes
towards obtaining the dynamics of a massless graviton on the wall of the dark bubble. We
conclude our short report in section 5.

2 Holographic cosmology — a primer

In this section we present the central ingredients that are essential for building up an expanding
cosmological model on a holographic screen. The holographic screen is here a UV cutoff
near the boundary of an asymptotically AdS spacetime which can as well be a codimension-1
brane with a fixed value of tension. There had been earlier attempts to realize cosmology in
the realm of AdS/CFT, including a surge of research activities to establish a holographic
description of RS braneworld models [22–37]. However, as discussed above, there was still
an outstanding puzzle regarding the choice of appropriate boundary conditions that can
potentially give rise to a dynamical cosmological spacetime on the boundary. As discussed
above, this was due to the fact that the Dirichlet boundary condition used in standard
AdS/CFT renders the boundary metric fixed and time-independent, which was clearly not
conducive for realizing expanding cosmology at the boundary. This issue was successfully
addressed in [19, 20] which we briefly gloss over below.

Our setup consists of a d-dimensional de Sitter hypersurface living close to the boundary
of an AdSd+1 spacetime, which we will later promote to a holographic model of a dark bubble.
The metric of the bulk is of the form

ds2 = −f(r) dt2 + 1
f(r) dr2 + r2 dΩ2

d−1, (2.1)
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with the radial function f(r). The spacetime is cut off by a brane at a radial position
a that evolves in time. This is a crucial requirement since the boundary hypersurface in
this setup corresponds to the expanding universe and hence has to be dynamical. It is
convenient to introduce a proper time parameter τ as the brane time, and then to choose a
suitable parametrization {t(τ), a(τ)} in order to adjust the boundary metric appropriately.
For cosmological applications, we want to imprint an FRW metric on the boundary:

ds2 = −dτ2 + a2(τ)dΩ2
d−1. (2.2)

In order to describe the dynamics of the hypersurface, we now need to impose suitable
boundary conditions. As argued above, in order to ensure real-time dynamics on the cutoff
surface, which can as well be thought of as an end-of-the-world brane with fixed tension, we
need to dump the Dirichlet conditions, and instead resort to mixed boundary conditions.
In order to implement this boundary condition, we need an appropriate local stress-energy
tensor T local

ij along with the induced CFT stress-energy tensor T CFT
ij on the brane. T local

ij and
T CFT

ij are obtained by varying, respectively, the corresponding local action and the full bulk
action supplemented by the Gibbons-Hawking-York counter term [38]

Slocal = − 1
16πGd

∫
∂M

ddx
√
−γ(R[γ] − 2Λd) , (2.3)

Sbulk = 1
16πGd+1

∫
M

dd+1x
√
−g

(
R[g] + d(d − 1)

L2

)
+ 1

8πGd+1

∫
∂M

ddx
√
−γK[γ] (2.4)

Furthermore, to render the full stress-energy tensor finite, even in the limit when the expansion
parameter goes to infinity a(τ) → ∞, we need to add, additionally, a counterterm T ct

ij which
is obtained by varying the counterterm action

Sct = −1
2

∫
∂M

ddx
√
−γ(κ1R[γ] + κ2), (2.5)

that appears in the bulk action following holographic renormalization2 [39]. Compiling all
these ingredients, the mixed boundary condition reads [21]

T CFT
ij + T local

ij + T ct
ij = 0. (2.6)

The different components appearing in (2.6) take the following explicit expressions,

T CFT
ij = 1

8πGd+1
(Kij − Kγij), (2.7)

T local
ij = − 1

8πGd

(
Rij −

1
2Rγij + Λdγij

)
, (2.8)

T ct
ij = −κ1

(
Rij −

1
2Rγij

)
− κ2γij . (2.9)

2This action is valid for d ≤ 5 which is relevant for our considerations. For general d > 5, one will have to
take into account non-vanishing higher order corrections in terms of curvature invariants [39].
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Here, the Ricci tensor Rij and the Ricci scalar R are defined on the brane, so is the extrinsic
curvature Kij = 1/2 nk∂kγij . The parameters κ1, κ2 are determined through holographic
renormalization [39]. Technically, these parameters are chosen such that the energy density
ϵ and the pressure p on the cutoff brane are finite. In a 4+1 dimensional asymptotically
AdS spacetime, the energy density, pressure and the trace of the stress-energy tensor on
the brane are given by [19]

ϵ = T CFT
ττ + T ct

ττ = κ2 + κ1

(
H2 + k̃

a2

)
− 3

8πG5a

√
ȧ2 + f(r),

p = T i, CFT
i + T i, ct

i = −κ2 − κ1

(
H2 + k̃

a2 + 2ä

a

)
+ 1

16πG5

af ′ + 2(aä + 2ȧ2) + 4f

a
√

ȧ2 + f
,

Tr T = − 3L3

16πG5

(
H2 + 1

a2

)
ä

a
+ O(H4), (2.10)

with H = ȧ/a being the Hubble parameter and k̃ = 0,±1, depending on whether the
asymptotic boundary is flat, spherical or hyperbolic, respectively. In order to render (2.10)
finite in the limit a → ∞, one needs to choose

κ1 = 3L

16πG5
and κ2 = 3

8πG5L
, (2.11)

which can be thought of as renormalizing the bare 4-dimensional Newton’s constant and
the 4-dimensional cosmological constant, respectively.

Having a non-trivial dynamic metric on the boundary will nevertheless break the conformal
invariance on the boundary, which can be tracked, systematically, by computing the Weyl
anomaly. To demonstrate this, let us consider a 4+1 dimensional AdS Schwarzschild black
hole with the blackening factor f(r) = k̃ + r2

L2 − M
r2 with a flat static boundary so that

H = k̃ = 0. In this case, the renormalized energy density and pressure on the brane simplifies
as an expansion in large a as

ϵ = 3
8πG5L

((πLT )4

2 − 7(πLT )8

8 + . . .

)
, p = 1

8πG5L

((πLT )4

2 − 3(πLT )8

8 + . . .

)
, (2.12)

with T = THawking/
√

ȧ2 + f(a) being the red-shifted Hawking temperature on the cutoff brane.
Clearly, ϵ = 3p ∝ T 4 holds at the leading order of a-expansion which is thermodynamically
expected for a conformal fluid. This conformality is broken when the subleading contributions
are considered, i.e. when we move a finite distance away from the boundary and is broken
further when the full dynamics of the brane with H ̸= 0 is considered. The latter is evident
from the non-vanishing trace term Tr T = ϵ−3p as in (2.10). Nevertheless, (2.10) still satisfies
the first law of thermodynamics at the leading order of a-expansion,

dE = TdS − pdV, (2.13)

S = (πLT )3V (3)/(4G5) being the entropy of the black hole, E = ϵV and V = a3V (3) where
V (3) is the three-dimensional transverse volume. Finally, plugging (2.10) and (2.11) back
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in the ττ component of (2.6) yields the cosmological evolution in the form of a Friedmann
equation on the brane, in the leading order of expansion in 1/a.

H2 ≡ ȧ2

a2 = − k̃

a2 + 8πG4
3 ϵ + 1

3Λ4. (2.14)

3 Non-normalizable modes and the graviton mass in a braneworld
construction

In the simple holographic setup discussed above, in this section, we will derive a formula for
graviton mass induced on the cutoff brane. For this purpose, we start with a Fefferman-Graham
expansion of an asymptotically AdSd+1 bulk metric (2.1) which assumes a generic form [40]

ds2 = L2

4ρ2 dρ2 + L2

ρ
gij(x, ρ)dxidxj , (3.1)

where gij(x, ρ) assumes a power series expansion near the boundary,

g(x, ρ) = g(0)(x) + · · · g(d)(x)ρ
d
2 + ḡd(x) ρ

d
2 log ρ, (3.2)

g(0) being the boundary metric. The last term is an anomaly term which contributes only
for even boundary dimensions. L is the AdS radius and ρ is the new radial coordinate with
ρ → 0 being the asymptotic boundary. As described in the previous section, we introduce a
brane at the hypersurface close to the boundary of AdS at ρ = ϵ where ϵ serves as a UV cutoff
from the perspective of the dual field theory. In order to have a fully consistent boundary
theory without any UV divergence, one would naively expect the modes of the induced metric
γij = L2/ϵ gij(x, ϵ) on the brane to be normalizable in the asymptotic limit. In what follows
we will now show that this contradicts the physical requirement of a massless graviton.

In order to evaluate the relation between normalizable modes and the graviton mass,
let us consider a small metric fluctuation

δγij = γij − γ̄ij , (3.3)

where γ̄ij is the background metric on the cutoff surface. The dynamics of this graviton
excitation is then determined by the linearized Einstein’s field equations on the hypersurface,
which in turn is encoded automatically in the mixed boundary condition (2.6). At the
linearized order, the equations of motion of the graviton excitation read

−1
2

(
1 + (d − 1)(d − 2)

2

)
□ δγij +

( (d − 1)(d − 2)
L2 + Λd︸ ︷︷ ︸

Λ̄d

)
δγij = 8πGdδT CFT

ij , (3.4)

where we have plugged in the corresponding values of the parameters in general dimensions
κ1 = (d−1)L

16πGd+1
, κ2 = d−1

8πGd+1L , and used the relation between the Newton constants of different
dimensions GdL = (d − 2)Gd+1 [15]. As such, we can identify a new effective cosmological
constant Λ̄d as a combination of the renormalization term governed by κ2 and the bare
d-dimensional cosmological constant, the latter being a part of the local stress-energy tensor
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on the brane. We are also free to set Λd = 0 which yields an effective de Sitter cosmological
constant.

The term including the perturbation of the stress-energy tensor δT CFT
ij appearing on

the right-hand side of (3.4) yields the mass term for the metric fluctuation. If we demand
the graviton to be massless, this term has to vanish. We will show that this only happens
when the fluctuation contains non-normalizable modes only.

In order to demonstrate this let us further linearize the right-hand side of (3.4) using
its expression given in (2.7). This yields

8πGd+1δT CFT
ij = 1

2nk∂kδγij

− 1
2nk(∂kγ̄nm)δγnmγ̄ij + 1

2nk(∂kδγnm)γ̄nmγ̄ij + 1
2nk(∂kγ̄nm)γ̄nmδγij .

(3.5)

Since the graviton on the brane should be a traceless, symmetric rank-2 tensor, the second
and third term of (3.5) cancel by virtue of the fact that δγnmγ̄nm = 0. This is a very
important point to emphasize. This is the same property that we will use explicitly to derive
the propagator for traceless excitations on the brane. The trace part, as we will discuss in
the upcoming section, is related to the number of degrees of freedom on the brane. The last
term of (3.5) drops out due to the fact that the trace of the induced metric is coordinate
independent. Evaluating the extrinsic curvature on the hypersurface S = ρ − ϵ = const.,
the remaining terms read

8πGd δT CFT
ij = d − 2

L2 [∂ρ(ρδγij) + 2ρ(∂ρδγnm)γ̄nmγ̄ij − δγij ] , (3.6)

The last term only provides a new contribution to the cosmological constant term of Einstein’s
equations. Bringing this to the left-hand side of (3.4), this redefines the cosmological constant
further as

Λeff
d = Λ̄d + d − 2

L2 = (d − 1)(d − 2)
L2 + Λd + d − 2

L2 . (3.7)

Again, using the freedom to choose Λd, we can fix Λeff
d = (d−1)(d−2)

L2 , the de Sitter value.
The contributions to the graviton mass then come from the first two terms of (3.6). Let

us now expand these terms in terms of normalizable and non-normalizable modes decomposed
through the Feffermann-Graham expansion of the graviton fluctuation,

δγij(ρ, x) = (α ρ−1 + · · · + β ρd/2−1) hij(x). (3.8)

Clearly, α is the non-normalizable mode and β is the normalizable mode in this asymptotic
expansion. This expansion implies that the tracelessness condition of the graviton holds
only if hij γ̄ij = 0. However, since in this expansion hij only depends on x, it is obvious
that (∂ρδγnm)γ̄nm = 0 in our case and hence the second term of (3.6) vanishes identically.
Inserting the mode decomposition in the single non-vanishing term of (3.6) yields

d − 2
L2 ∂ρ(ρδγij) = d − 2

L2 ∂ρ(α + β ρd/2) hij(x)

= d(d − 2)
2L2 β ρd/2 ρ−1 hij(x) ∼ d(d − 2)

2L2
β

α
ρd/2δγij . (3.9)
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In the last step, we used the fact that the non-normalizable part of the graviton fluctuation
dominates near the position of brane at ρ = ϵ close to the boundary, namely, δγij ∼ αρ−1hij .
In the near boundary expansion ϵ → 0 one can read off the graviton mass directly from (3.9) as

m2
grav = −β

α

2 d(d − 2)
(d − 1)(d − 2) + 2

ϵd/2

L2 . (3.10)

As is evident from (3.10), in order to get a massless graviton, one does need to set β = 0,
i.e. we need to exclude the normalizable mode from the field expansion. In other words, in
order to get a consistent holographic description of such a cosmological model, one needs
to consider only non-normalizable boundary conditions. This conclusion is very much in
line with that of [18].

As mentioned in the previous section, there should also be additional trace contributions
to the CFT stress-energy tensor. By construction, such contributions are normalizable, as
can be verified directly by performing a near boundary expansion a → ∞ of (2.10). However,
this anomalous part of the stress-energy tensor does not contribute to a mass term, rather it
provides the number of degrees of freedom imprinted on the cutoff brane. We will come back
to this, once again, in the context of our dark bubble model in the upcoming section.

4 From braneworld to bubbleworld: the graviton propagator on the shell

So far we have discussed a simple one-sided case with an AdSd+1 bulk geometry with a
cutoff brane near the boundary. Now we extend this configuration, replacing the cutoff with
a spherical shell having an interior as well as an exterior region. This is the dark bubble
model set up and developed in [2–11]. In this model, the AdS spaces in the inside (−)
and outside (+) have different length scales with Λ+ > Λ− which ensures the expansion
of the dark bubble. The junction across the shell, separating the two regions, determines
the tension of the bubble wall. As discussed before, a subcritical tension of the wall leads
to a positive cosmological constant on it, corresponding to the desired de Sitter universe.
The non-identical AdS spaces in the interior and exterior region render the gravitational
constant finite, but for this one does need to allow non-normalizable modes in these regions,
which in turn imprint massless graviton modes on the bubble wall. In the dark bubble model
such non-normalizable modes are physically realized using hanging strings as sources. These
provide the required kinetic energy for the bubble to expand in the presence of particles of
dust represented by the end points of the strings [4].

Our goal in this subsection is to fit the dark bubble model into the holographic formalism
discussed in the previous sections. The major technical difference is how to incorporate the
junction condition across the bubble wall that separates the two holographic bulk spacetimes.
The location of the bubble wall coincides with the near boundary regions of both the bulk
regions. In this setup the graviton propagator on the bubble was computed in [3]. We
will revisit this computation in this section, but, this time, in the light of the holographic
formalism developed in the previous sections.

Unlike the previous section, where the brane is merely a cutoff near the boundary, the
dynamics of the bubble wall plays a more crucial role in the dark bubble model. As discussed
above, in order to implement the junction between interior and exterior with a view to get an
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expanding universe on the bubble, we require a subcritical positive tension spherical brane to
be realized as the bubble wall. The latter modifies the bulk action as3

S = Sbulk + Sbrane = Sbulk + σ

∫
ddx

√
−γ , (4.1)

where σ is the brane tension.
The extra contribution due to the brane only depends on the determinant of the induced

metric and is of the same form as that of the constant term proportional to κ2 in the
counterterm action (2.5) in the bulk. Therefore, in the equation of motion, this will provide
a new contribution to the cosmological constant term. The derivation is similar to that
leading to (3.7), however, there are a couple of interesting catch points, particularly for the
dark bubble model, which has an interior and an exterior. The latter is manifest in the
difference of the AdS scales appearing in the denominator of the r.h.s. of (1.6). This has
an interesting consequence in terms of a different hierarchy between the four-dimensional
and the five-dimensional Newton’s constants given by [9, 12]

G4
G5

= − 3
L

N

∆N
, (4.2)

where ∆N is a negative integer signifying the number of nucleated D3 branes from a stack
of N D3 branes in the ten-dimensional realization of the dark bubble model in type IIB
supergravity [9]. This new scaling behaviour follows precisely due to the difference in scales
appearing in the denominator of (1.6), rather than the sum, as usually for RS-like braneworld
models. The second important point is that we need to run the holographic renormalization
scheme from either side of the brane consistent with the junction condition. This would
fix the renormalization parameters as

κ1 = 3 (L+ − L−)
16πG5

, κ2 = 3
8πG5

( 1
L−

− 1
L+

)
, (4.3)

for the two-sided geometry. Taking these two special features of the dark bubble model
into account, along with the contribution of the brane tension, we end up in getting the
effective four-dimensional cosmological constant as4

Λeff
4 = 8πG4κ2 − σ = 6

L2 − σ. (4.4)

It is interesting to note that, at the end of the day, the effective cosmological constant
retains its form as in the standard one-sided holography, as in (3.7). Nevertheless, the
scale of hierarchy, N appearing in (4.2), makes our dark bubble significantly different from
the inside-inside braneworld models, including the RS. This difference provides a reversal
of hierarchy beteen the five-dimensional and four-dimensional Planck scales, resulting in

3Note, unlike the one-sided holographic setup, in the dark bubble model we do not need to add any
local action Slocal on the wall to induce the dynamics. This is because, in this case, the junction conditions
imposed across the shell determines the tension which in turn automatically reproduces the effect of Slocal and
accordingly, the dynamics of the bubble wall.

4We fix the contribution to the cosmological constant coming from the local term exactly as before, namely,
by choosing Λ4 in such a way that it cancels the contribution coming from the CFT stress-energy tensor.
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interesting phenomenological implications. Interested readers are referred to [12] for a
detailed account of the latter.

Note, that this is precisely the desired cosmological constant (1.5) on the brane, with
the critical tension of the brane holographically identified with the parameter of holographic
renormalization, 8πG4κ2. Varying the full action (4.1) yields the equation of motion

Gµν = 1
2Md−1 [Tµν − Λgµν − σ(gµν − nµnν)δ(Xd+1 − Xd+1(x))], (4.5)

where Gµν is the Einstein’s tensor, and nµ is the normal vector on the brane. The delta
function appearing in the field equation selects the bulk position of the shell parametrized
by its world-volume coordinates xa.

Our strategy is first to linearize the equation of motion in terms of the leading graviton
fluctuation as before. For this, it turns out to be convenient to use the Gauss normal
coordinates, in which the AdS metric assumes the form [3]

ds2 = dξ2 + a2(ξ)(ηab + hab (ξ, xa)) dxadxb. (4.6)

One can obtain this metric from the Fefferman-Graham metric (3.8) simply by rescaling
the radial coordinate as

ρ ∝ e−2kξ = a−2(ξ), (4.7)

with k = 1
L being the inverse of the AdS length scale.

The main algebraic difference we have here, as compared to the simpler one-sided
braneworld construction presented in the previous section, is the last term in (4.5). It
contains products of normal vectors on the brane which give additional derivative terms
with respect to the normal coordinate when we linearize the equations of motion in the
metric fluctuation hab. At the leading order of the metric perturbation in hab, the transverse
components of (4.5) yields [41]

□h̄ab = e2kξ(−ηab∂
n∂mh̄nm + ∂n∂ah̄bn + ∂n∂bh̄an)

+ ηab

2 ekξd∂ξ(e−kξd∂ξh̄) − 16πGd+1e2kξTab,
(4.8)

where we have defined the trace-reversed fluctuations

h̄ab = hab −
1
2ηabh (4.9)

satisfying the transverse gauge condition ∂ah̄ab = 0 everywhere outside the location of the
source [41]. Absorbing the scale factor by defining γab := a2(ξ)hab and taking a trace, one
obtains from (4.8) a trace equation in d = 4 of the form

a−2∂2γ̄ + 3(∂2
ξ − 4k2)γ̄ = −16πG5T, (4.10)

where γ̄ab is the trace reversed γab.

– 11 –



J
H
E
P
0
2
(
2
0
2
4
)
1
0
2

We need to subtract (4.10) from the original linearized equation (4.8), in order to select
the traceless graviton mode. With this, finally, the equations of motion for the graviton
on the dark bubble assume the form [3]

□χab + (∂2
ξ − 4k2)χab = −16πG5Σab, (4.11)

where χab and Σab represent the traceless metric excitation and stress tensor, respectively.
Before we solve the equations of motion and continue with the derivation of the propagator,

let us pause a bit to check the role of normalizable and non-normalizable modes in generating
the mass of these transverse traceless modes. We follow the same strategy as discussed in
section 3, namely to study the equations of motion of these modes near the boundary to
extract the mass term. In particular, it would be interesting to see whether the additional
piece of the dark bubble equations of motion (4.11), arising due to the shell tension, alters
the previous conclusion in any way. Following this motivation, we will concentrate on the
second term in (4.11), since the stress tensor contribution is the same in both cases.

To accomplish our goal, we need to first go back to the Fefferman-Graham radial
coordinates through (4.7). In this coordinate, the relevant piece of the equations of motion
transforms into the form

(∂2
ξ − 4k2)χab = 4k2[−∂ρ(ρχab) + ρ∂2

ρ(ρχab)]. (4.12)

Once again, we plug in this the mode decomposition of the metric fluctuation (3.8) for
d = 4. It yields

(∂2
ξ − 4k2)χab = 4k2(−2βρ + 2βρ)hab = 0. (4.13)

Thus, taking the limit ρ → a−2
s , with as → ∞ being the location of the brane, we obtain a

vanishing correction to the mass term at the leading order. Therefore, in the d = 4 holographic
dark bubble, we end up getting, exactly, the same mass term of the graviton (3.10) on the
bubble wall.5 Accordingly, the condition for having a massless graviton on the brane remains
the same as well, i.e., in the holographic model of dark bubble, we do need to turn off the
normalizable fluctuation modes and should only allow non-normalizable modes instead. As
discussed in the introduction, physically, this condition fits perfectly with our dark bubble
model, as the non-normalizable modes in this model are carried by hanging strings present
in this model. A detailed discussion on this can be found in [4].

We now carry forward this finding towards determining the real dynamics of the graviton
on the bubble wall. For deriving the propagator on the wall, it is easier to work in momentum
space. We therefore apply a transverse Fourier transformation to (4.11) that yields [3](

− p2

a2 + ∂2
ξ − 4k2

)
χ̃ab(p, ξ) = −16πG5Σ̃ab. (4.14)

χ̃ab and Σ̃ab are the transverse Fourier transforms of the trace removed metric and stress
tensor, respectively. The shell is assumed to be localized at as ≡ a+ = a−, where a± describes

5The mass terms get modified in higher dimensions. Nevertheless, they remain proportional to the ratio
between the normalizable and the non-normalizable modes. Consequently, the conclusion remains unaltered.
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the scale factor in the interior or exterior region. It is instructive to first solve for a massless
minimally coupled scalar propagator in AdS. The latter essentially satisfies the same equation
of motion as (4.14), and reproduces all the relevant qualitative features of the solutions
of (4.14). Finally, of course, we will reinstate the indices properly to write down the solution
for the graviton mode explicitly. The full computation was done in [3]. We will here only
show the main steps and make it aligned with the holographic lessons we learnt above.

We start with an ansatz for a solution of the Green’s function for the exterior and
interior regions

∆+
χ̃ (p; a+, a−) = A(p, a−)K2

(
p

k+a+

)
+ B(p, a−)I2

(
p

k+a+

)
(4.15)

∆−
χ̃ (p; a+, a−) = C(p, a+)K2

(
p

k−a−

)
, (4.16)

valid outside the source, which in this case is the brane at the junction. K2 and I2 denote
the respective modified Bessel functions, and represent non-normalizable and normalizable
metric modes in the large a limit. The normalizable piece proportional to I2 does not
appear in (4.16) because it is divergent in the limit a → 0 where we expect our solution to
be regular. We fix two of the coefficients A, B, C using junction conditions on the bubble
wall. There are two matching conditions, one for the propagator function and the other
involving its derivative, namely

∆−
χ̃ (p; a+, as) = ∆+

χ̃ (p; as, a−), (4.17)

1
16πG5

[
∂

∂ξi
∆i

χ̃(p; a+, a−)|ai→as

]i=+

i=−
+ σ

3 ∆+
χ̃ (p; as, a−) = 1

16πG5
. (4.18)

Solving this, we express A and C in terms of B, which leads to a Green’s function of the form

∆+
χ̃ (p; a+, a−) = −

[ 1
gK(p, as) − B(p, a−) gI(p, as)

gK(p, as)

]
K2

(
p

k+a+

)
(4.19)

+ B(p, a−)I2

(
p

k+a+

)
, (4.20)

with

gK(p, as) = p

as

K2
(

p
k+as

)
K1
(

p
k−as

)
− K2

(
p

k−as

)
K1
(

p
k+as

)
K2
(

p
k−as

) , (4.21)

gI(p, as) = p

as

I2
(

p
k+as

)
K1
(

p
k−as

)
+ K2

(
p

k−as

)
I1
(

p
k+as

)
K2
(

p
k−as

) . (4.22)

This is the time to use our holographic understanding of boundary conditions as we now
aim to fix the last remaining function, B(p, as) on the brane. We recall the requirement for
having a massless graviton on the wall, in the limit when the brane is close to the asymptotic
boundaries of either AdS spacetime. In the context of the present model, this demands
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setting the normalizable mode to be set to zero in the near boundary expansion as → 0
of (4.19). This in turn fixes B(p, as) as

B(p, as) = − η

ηgI(p, as) − 4gK(p, as) with η := 3 − 4γ + 4 ln 2. (4.23)

Plugging (4.23) in (4.19) in the low momentum limit yields the propagator on the bub-
ble wall as

∆s
χ̃(p; as, as) = a2

s

p2

( 2k−k+
k− − k+

)
+ O(p0). (4.24)

Finally, after convoluting the Green’s function with the source term which corresponds to
a simple multiplication in momentum space, the Fourier component of the graviton mode
on the bubble wall is

χ̃s
ab(p; as) = −16πG5

a2
s

p2

( 2k−k+
k− − k+

)
Σ̃ab. (4.25)

This recovers, in the small momentum limit, the expected four-dimensional graviton
mode as imprinted on the bubble wall with the correct four-dimensional Newton’s constant [1].
The key point we want to emphasize in this paper, through the computation leading to (4.25),
is the role of holography in reproducing the correct propagator on the bubble wall. We use the
requirement of having a massless graviton on the brane, which automatically dictates the
proper boundary condition. Surprisingly enough, this was already an energetic requirement
in our dark bubble model to ensure an expanding universe on the wall [1, 2]. The present
work reestablishes it in terms of a proper holographic requirement.

We will conclude this section with a pending discussion on the degrees of freedom on the
brane. As outlined in section 3, the CFT stress-energy tensor generally has a trace piece due
to the conformal Weyl anomaly that we subtracted from the equations of motion in order to
take into account the tracelessness of the graviton imprinted on the bubble wall. We now
want to emphasize the physical connection of the trace piece to the number of degrees of
freedom on the wall. Similarly to section 3, we need to consider the stress-energy tensor of
the CFT which is renormalized by means of the holographic renormalization techniques [40].
In the two-sided case of the dark bubble, the choice of the renormalization parameters (4.3)
renders finiteness of the brane stress-energy tensor in the limit as → ∞.

We now compute the trace of the regularized stress energy tensor, and compare it to the
expected Weyl anomaly for the conformal field theory on the brane, namely, [38, 42]

Tr T = − N2
eff

32π2

(
−RijRij + 1

3R
2
)

, (4.26)

which yields, for our case,

N2
eff = π

2G5

(
L3

+ − L3
−

)
. (4.27)

This matches perfectly with the thermodynamical derivation presented in [1]. Usually, when
we simply have one term of type πL3

2G5
, this translates into N2, which is the number of adjoint

fields. For the dark bubble, we find, due to the subtraction, N , which is the dimension of
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the fundamental representation. This was also used in [9], when discussing corrections to
the string tension. The physical picture is that of the background AdS5 × S5, dual to N

branes. In this background a single brane nucleates, the dark bubble. The counting is that
of open strings connecting the brane to the background. It is interesting to note that the
number of degrees of freedom is always ∼ L2/G4.

5 A brief summary of the main claim

The aim of this work is to fit the dark bubble model consistently within a holographic
framework [2–11]. We manage to achieve this through a careful and thorough investigation of
a broader class of boundary conditions allowed in AdS/CFT [21]. While such constructions
were already done in the context of holographic cosmology [19, 20], the challenge we faced
here was to incorporate the two-sided bulk geometry, living on either side of the bubble wall,
which, geometrically, are the inside and the outside of the bubble. A second challenge was to
make the dark bubble model phenomenologically reasonable to produce the correct dynamics
of the graviton on the brane, along with a finite four-dimensional Newton’s constant. We
noticed the necessity of having extended objects like strings carrying momentum, which in
turn imprints matter on the bubble wall. Not only that, these strings also ensure proper
temporal evolution of the bubble, which from the perspective of the physics on the wall can
be realized through a process of mass renormalization (see [4] for a detailed discussion on
it). The latter ensures finite masses of the particles induced on the wall.

While we needed the strings to ensure the consistency of the model, it was a challenge to
fit this aspect in the context of holography. In this paper, we showed that this requirement
can be converted into the requirement of having a massless induced graviton on the bubble
wall. For this we need to discard the normalizable components of the asymptotic expansion
of bulk graviton fluctuation keeping only the non-normalizable piece. A similar conclusion
was drawn recently in [18] in the context of a one-sided Karch-Randall braneworld scenario.
In our two-sided case, this requirement fits nicely, in the sense that these non-normalizable
modes are nothing but an artifact of the momentum carrying strings that makes the dark
bubble a suitable model of the expanding universe, while being perfectly consistent with the
swampland conjectures avoiding the usual no-go theorems that prevent generating a de Sitter
universe imprinted on a conventional positive tension braneworld [6]. This is also where
our construction significantly differs from the Randall-Sundrum braneworld story [7]. We
revisited the computation of the graviton propagator on the brane [3], but now endowed with
the complete holographic understanding of the conditions to be imposed to fix the relevant
functions on the brane. It yields the correct massless graviton propagator in the low energy
limit, with the correct four-dimensional Newton’s constant.

Last but not least, in this process of rediscovering our model in the light of hologra-
phy, we interpret the critical tension of the brane in terms of a parameter of holographic
renormalization and also compute the effective degrees of freedom on the bubble wall from
the conformal Weyl anomaly of the holographically renormalized stress-energy tensor. The
degrees of freedom matches exactly with its thermodynamical estimation presented in [1].
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